17 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Воздушная прослойка как утеплитель

КАК УТЕПЛИТЬ КРЫШУ ИЗНУТРИ СВОИМИ РУКАМИ

Если на чердаке планируется обустроить еще одну комнату, то утеплять потребуется непосредственно саму крышу с ее внутренней стороны.

ПОДГОТОВКА КРЫШИ

Если жильё уже эксплуатировалось, обязательно осмотрите стропильную систему. Все подгнившие, сломанные или треснувшие детали замените на новые или усильте.

Если толщина стропил меньше толщины утеплителя, ее нужно увеличить. Для этого к стропилам следует прикрепить доски или брусья.

Затем все деревянные детали крыши, включая стропила, необходимо обработать антисептиком. Это защитит дерево от гниения и других повреждений. Пропитка наносится при помощи кисти или распылителя. Подробная инструкция по применению состава обычно есть на упаковке.

УТЕПЛЕНИЕ КРЫШИ

Теперь переходим к самому утеплению крыши.

Слой первый: гидроизоляция

Закрепление гидробарьера проводится таким образом, чтобы он обволакивал все стропила, а также занимал все пространство обрешетки. Крепим всё при помощи строительного степлера.

Важно! Чтобы в дальнейшем осуществлялся отвод воды, необходимо позаботиться о выводе гидроизоляции под свес крыши.

Слой второй: утеплитель

В зависимости от того, что используется для утепления, необходимо оставить воздушную прослойку между слоями или обойтись без нее.

Прослойка не нужна, если: сделан отвод для воды или в качестве утеплителя используются плиты минеральной ваты.

В остальных случаях стоит оставить промежуток около 5 сантиметров между гидроизоляционным слоем и утеплителем. Для этого по стропилам набиваются гвозди на расстоянии около пяти сантиметров и по ним натягивается веревка, которая не позволит утеплителю плотно прилегать, а значит, между слоями образуется воздушная прослойка.

Укладываем утеплитель

Сам утеплитель необходимо укладывать двумя слоями так, чтобы стык первого слоя закрывался плитами второго.

Крепится утеплитель при помощи натянутой поверх материала лески. Для этого необходимо предварительно набить гвозди по краям стропил. В качестве альтернативного варианта можно использовать обрешетку из реек, которые прибиваются перпендикулярно стропилам через каждые 30-40 см.

Слой третий: паробарьер

Здесь особенно важна герметичность. Поэтому паронепроницаемые пленки всегда укладывают внахлест с запасом в 10 см. Все стыки дважды проклеивают клейкой лентой. Особое внимание необходимо уделять сложным местам – там, где пленка стыкуется со стенами, трубами или иными конструкционными элементами.

Обрешётка

Поверх пароизоляции крепят обрешетку, используя рейки или доски. Обрешетка обеспечит вентиляционное пространство между отделочным материалом и пароизоляцией.

Кроме того она позволит выровнять поверхность перед монтажом финишного покрытия, если чердак будет использоваться как жилое помещение.

Останется лишь выполнить монтаж отделочного материала – гипсокартона или, к примеру, вагонки.

Если крыша двускатная, и вы утепляете крышу дома изнутри с целью обустройства жилого чердачного помещения, то утеплите также и фронтоны (это часть стены, расположенная между скатами кровли).

На этом теплоизоляция крыши дома своими руками завершена.

РУП «Белстройцентр»

В статье рассматривается конструкция теплоизоляционной системы с замкнутой воздушной прослойкой между теплоизоляцией и стеной здания. Предлагается использовать паропроницаемые вставки в теплоизоляции с целью предотвращения конденсации влаги в прослойке воздуха. Приводится метод расчета площади вставок в зависимости от условий использования теплоизоляции.

This paper describes the thermal insulating system having dead air space between the thermal insulation and the outer wall of the building. Water vapour-permeable inserts are proposed for use in the thermal insulation in order to prevent moisture condensation in the air space. The method for calculating the area of the inserts has been offered depending on the conditions of the thermal insulation usage.

ВВЕДЕНИЕ

Воздушная прослойка является элементом многих ограждающих конструкций зданий. В работе [1] исследованы свойства ограждающих конструкций с замкнутой и вентилируемой воздушными прослойками. В то же время особенности ее применения во многих случаях требуют решения задач строительной теплотехники в конкретных условиях использования.

Известна и широко используется в строительстве конструкция теплоизоляционной системы с вентилируемой воздушной прослойкой [2]. Основное преимущество этой системы перед легкими штукатурными системами — возможность выполнения работ по утеплению зданий круглый год. К ограждающей конструкции вначале прикрепляется система крепежа утеплителя. Утеплитель прикрепляется к этой системе. Наружная защита утеплителя устанавливается от него на некотором расстоянии, так что между утеплителем и наружным ограждением образуется воздушная прослойка. Конструкция системы утепления позволяет осуществлять вентиляцию воздушной прослойки с целью удаления излишков влаги, что обеспечивает снижение количества влаги в утеплителе. К недостаткам этой системы можно отнести сложность и необходимость наряду с использованием утеплительных материалов применять сайдинговые системы, обеспечивающие необходимый зазор для движущегося воздуха.

Известна система вентиляции, в которой воздушная прослойка примыкает непосредственно к стене здания [3, 4]. Теплоизоляция выполнена в виде трехслойных панелей: внутренний слой – теплоизоляционный материал, наружные слои – алюминий и алюминиевая фольга. Такая конструкция защищает утеплитель от проникновения как атмосферной влаги, так и влаги из помещений. Поэтому его свойства не ухудшаются в любых условиях эксплуатации, что позволяет сэкономить до 20 % утеплителя по сравнению с обычными системами [5]. Недостатком указанных систем является необходимость проветривания прослойки для удаления влаги, мигрирующей из помещений здания [3, 4]. Это приводит к снижению теплоизоляционных свойств системы. К тому же, тепловые потери нижних этажей зданий увеличиваются, так как холодному воздуху, поступающему в прослойку через отверстия внизу системы, требуется некоторое время для нагрева до установившейся температуры.

Авторы предлагают рассмотреть системы утепления с воздушными прослойками, свободные от указанных недостатков.

СИСТЕМА УТЕПЛЕНИЯ С ЗАМКНУТОЙ ВОЗДУШНОЙ ПРОСЛОЙКОЙ

Возможна система теплоизоляции, аналогичная [3, 4], с замкнутой воздушной прослойкой. Следует обратить внимание на тот факт, что движение воздуха в прослойке необходимо только для удаления влаги. Если решить задачу удаления влаги другим способом, без проветривания, получим систему теплоизоляции с замкнутой воздушной прослойкой без указанных выше недостатков.

Для решения поставленной задачи система теплоизоляции должна иметь вид, представленный на рис. 1. Теплоизоляцию здания следует выполнить с паропроницаемыми вставками из теплоизоляционного материала, например, минеральной ваты. Систему теплоизоляции необходимо устроить таким образом, чтобы обеспечивалось удаление пара из прослойки, а внутри нее влажность была ниже точки росы в прослойке.

1 – стена здания; 2 – крепежные элементы; 3 – теплоизоляционные панели; 4 – паротеплоизоляционные вставки

Рис. 1. Теплоизоляция с паропроницаемыми вставками

Для давления насыщенного пара в прослойке можно записать выражение [4]:

(1)

Пренебрегая термическим сопротивлением воздуха в прослойке, среднюю температуру внутри прослойки определим по формуле

(2)

где Tin, Tout – температура воздуха внутри здания и наружного воздуха соответственно, о С;

R1, R2 – сопротивление теплопередаче стены и теплоизоляции соответственно, м 2 × о С/Вт.

Для пара, мигрирующего из помещения через стену здания, можно записать уравнение:

(3)

где Pin, P – парциальное давление пара в помещении и прослойке, Па;

S1 – площадь наружной стены здания, м 2 ;

kпп1 – коэффициент паропроницаемости стены, равный:

(4)

m 1 – коэффициент паропроницаемости материала стены, мг/(м×ч×Па);

Для пара, мигрирующего из воздушной прослойки через паропроницаемые вставки в теплоизоляции здания, можно записать уравнение:

(5)

где Pout – парциальное давление пара в наружном воздухе, Па;

S2 – площадь паропроницаемых теплоизоляционных вставок в теплоизоляции здания, м 2 ;

kпп2 – коэффициент паропроницаемости вставок, равный:

(6)

m 2 – коэффициент паропроницаемости материала паропроницаемой вставки, мг/(м×ч×Па);

Приравняв правые части уравнений (3) и (5) и решив полученное уравнение для баланса пара в прослойке относительно P, получим значение давления пара в прослойке в виде:

(7)

Записав условие отсутствия конденсации влаги в воздушной прослойке в виде неравенства:

(8)

и решив его, получим требуемое значение отношения суммарной площади паропроницаемых вставок к площади стены:

(9)

В таблице 1 приведены полученные данные для некоторых вариантов ограждающих конструкций. В расчетах предполагалось, что коэффициент теплопроводности паропроницаемой вставки равен коэффициенту теплопроводности основной теплоизоляции в системе.

Воздушная прослойка как утеплитель

Теплозащита наружных стен дома и внутренних перегородок является важным вопросом. Речь идет о дополнительных слоях теплоизоляции с наружной и внутренней сторон стен. Кроме того, что теплоизоляционный материал сохраняет тепло, он еще и оказывает существенное влияние на влажностный режим стен. Установлен он может быть как на наружной стороне стены, так и на ее внутренней поверхности. На рис. 69в ( «Утепление стен» ) теплоизоляционный слой установлен с внутренней стороны (+ — внутренняя сторона, — — внешняя сторона стены). В данном случае происходит изменение влажностного режима стены.

Читать еще:  Утеплитель против грызунов

Внутренний слой значительно легче, чем материал существующего ограждения, и свободно пропускает пар, что приводит к скапливанию влаги в толще стены на границе с утеплителем. Поэтому повышается влажность стены при одновременном понижении ее температуры, что способствует образованию конденсата на небольшой глубине от внутренней поверхности. При устройстве пароизоляции на внутренней поверхности стены и утеплителя с защитным слоем на наружной поверхности теплозащитные характеристики ограждения значительно увеличиваются. Однако при этом, как и в предыдущем варианте, в отдельных случаях возможно образование поверхностного конденсата на пароизоляционном слое. Примером такой конструкции является кирпичная стена, окрашенная изнутри масляной краской и отделанная снаружи известковой штукатуркой (рис. 69б) .

Повысить теплозащиту можно за счет создания в конструкции замкнутой воздушной прослойки. Если воздушная прослойка располагается близко от внутренней поверхности (рис. 69в) , то происходит отрицательное для стены изменение температурно-влажностного режима, т. е. явление, во многом аналогичное тому, с чем приходится сталкиваться при утеплении стены изнутри. Устройство с внутренней стороны пароизоляции препятствует прониканию в воздушную прослойку водяных паров внутреннего воздуха и повышает теплозащиту стены. Поэтому целесообразно располагать воздушную прослойку ближе к наружной поверхности стены. Благодаря такому расположению заполненная воздухом, имеющим низкий коэффициент теплопроводности, прослойка значительно повышает теплотехнические качества ограждения. Устройство пароизоляции с внутренней поверхности стены при наличии прослойки (рис. 62г) позволяет не допустить увлажнение конструкции изнутри и существенно повысить ее теплозащиту.

Установка пароизоляции одновременно с внутренней и наружной сторон препятствует высыханию материала конструкции и способствует скапливанию влаги в толще ограждения. В связи с этим такое решение недопустимо в первую очередь для деревянных стен, а также для стен первых этажей, где возможен подсос влаги. Не давая влаге испаряться ни наружу, ни внутрь, пароизоляция способствует переувлажнению материала, повышению его коэффициента теплопроводности, снижению сопротивления теплопередаче и промерзанию стен в холодное время года, а также поражению грибками (рис. 69д) .

Малоудачным с теплотехнической точки зрения является и утепление конструкции одновременно с наружной и внутренней стороны (рис. 69е) . Кроме того, возможные повреждения наружной теплоизоляции приводят к тому, что конструкция начинает «работать» так же, как и в случае расположения утеплителя изнутри.

Рассмотренные схематически варианты утепления наружных стен с учетом их преимуществ и недостатков позволили разработать конструктивные мероприятия, позволяющие повысить теплозащиту дома.

Ссылки на другие страницы сайта по теме «строительство, обустройство дома»:

О вентилируемой воздушной прослойке слоистых каменных стен

Каменные стены с воздушной вентилируемой прослойкой имеют древнюю историю. Еще до открытия Америки Колумбом индейцы нынешних южных штатов США строили дома с лицевым слоем из кирпича, отделенным от внутреннего несущего слоя воздушным зазором толщиной 20–30 см. Это позволяло сохранять микроклимат внутри помещений при резких сменах температуры наружного воздуха. В XX в. слоистые стены с лицевым слоем из кирпича широко применялись в северных европейских странах с влажным климатом. Первоначально это было вызвано необходимостью обезопасить наружные стены от повышенной влажности окружающей среды. Например, при частых косых дождях неоштукатуренные кирпичные стены способны увлажняться до 25–35 см, что приводит к снижению их теплоизоляционных свойств и долговечности. Эффективным способом защиты стен от переувлажнения явилось устройство воздушной вентилируемой прослойки толщиной до 5 см [1]. При этом для обеспечения совместной работы внутренний и лицевой слои соединялись между собой кирпичными диафрагмами либо, во избежание мостиков холода, гибкими стальными связями. Следует отметить, что в целях вентилирования деревянные перекрытия также обладали воздушными прослойками, соединенными с вентилируемыми каналами стен (рис. 1). Такая технология, известная как колодцевая кладка, широко применялась во всех республиках бывшего СССР вплоть до 70-х гг. ХХ в.

В 70-х годах прошлого столетия в Европе из-за повышения требований к теплозащитным свойствам стен толщина воздушной прослойки увеличивается до 10–15 см с целью размещения эффективного утеплителя, а лицевой кирпичный слой преимущественно соединяется с внутренним несущим слоем с помощью гибких анкеров (рис. 2). Такое решение применяется как в нововозводимых домах, так и в старых каменных, которые с целью снижения энергозатрат на обогрев и повышение презентабельности (эстетики фасадов) обкладываются высококачественным кирпичом.

В связи с ужесточением требований Мирового банка к экономии энергоресурсов толщина зазора между лицевым и внутренним слоями, заполненного утеплителем, должна быть увеличена до 15–20 см. При этом предпочтение отдается решению, показанному на рисунке 2, б, в котором во избежание сезонного влагонакопления в утеплителе и кирпичной кладке между ними устраивается воздушная вентилируемая прослойка (по примеру навесных фасадов). Такая прослойка способствует охлаждению и высыханию лицевого слоя, повышая этим его долговечность, а высыхание утеплителя – стабильности его теплотехнических свойств. Кроме того, предотвращается конденсация водяного пара на стальных анкерах, которые даже будучи оцинкованными подвергаются коррозии, особенно при контакте с минеральной ватой и фенольно-резольным пенопластом [2]. Категорически запрещается располагать воздушную прослойку между утеплителем и внутренним слоем стены, т.к. при таком расположении водяной пар в результате диффузии конденсируется в толще утеплителя, резко снижая его теплоизоляционные свойства.

Толщина воздушной прослойки с учетом возможности выдавливания раствора лицевого слоя внутрь должна быть около 4–5 см. При большей толщине возникающие воздушные потоки способствуют охлаждению утеплителя. На рис. 3 представлены полученные авторами опытные графические зависимости изменения температуры наружного воздуха, лицевого слоя из силикатного кирпича и воздушной прослойки в одном из эксплуатируемых зданий.

Их анализ показывает, что суточные колебания температуры наружного воздуха вызывают такие же колебания температуры воздушной прослойки и лицевого слоя. Существенным является то, что температура лицевого слоя может намного превышать температуру воздуха, а разница температур на наружной и внутренней поверхности лицевого слоя (до 10 0С) приводит к его колебанию из-за температурных деформаций. Благодаря циркуляции воздуха в прослойке в летнее время происходит о хлаждение лицевого слоя, а в осенне-зимнее время предотвращается его увлажнение. Вентилируемая прослойка должна быть непрерывной по высоте и длине невысоких зданий либо в случае высоких каркасно-монолитных зданий с поэтажной разрезкой кладок – в пределах этажа.

В России, как и в большинстве других стран СНГ, слоистые каменные стены стали широко применяться в середине 1990-х годов в связи с повышением нормативных требований к теплозащитным свойствам наружных стен жилых зданий. В процессе эксплуатации таких стен уже в первые годы выявился ряд серьезных недостатков, приведших к аварийному состоянию лицевого слоя в виде его растрескивания и отслоения. Одним из основных недостатков, по мнению специалистов, является отсутствие вентилируемой воздушной прослойки, что приводит к сезонному накоплению влаги между лицевым и внутренним слоями стены [3, 4].

Следует отметить, что СНиП 23–02–2003 [5] и ТКП 45–2.04–43–2006 [6] предписывают для многослойных ограждающих конструкций производить расчеты на сезонное влагонакопление. Эти расчеты тем более необходимы для широко применяемых конструкций двухслойных стен с внутренним слоем из ячеисто-бетонных блоков и лицевым слоем из пустотелых керамических камней. Известные недостатки таких стен усугубляются тем, что не защищенные термически торцы железобетонных перекрытий и балконов являются мостиками холода, которые оказывают негативное влияние на температурно-влажностное состояние обоих слоев кладки (рис. 4).

Термоизолирующие вставки в краевой части перекрытия методом сквозной перфорации не только малоэффективны, но и способствуют скоплению в них влаги в зимнее время. Скапливание конденсата между лицевым и внутренними слоями стен особенно на уровне перекрытий приводит в зимнее время к образованию льда. Одним из негативных последствий этого является “выдавливание” лицевого слоя наружу. Следует отметить, что свою “лепту” в этот процесс вносят и архитекторы, разнообразив цветовую гамму фасадов (рис. 4). Материалы темного цвета, как известно, способны более поглощать солнечную энергию, чем материалы светлых тонов. В связи с этим температура лицевого слоя, а следовательно, и воздуха в вентилируемой прослойке могут существенно отличаться в пределах одного фасада.

Отсутствие вентилируемой прослойки в двухслойных стенах (рис. 5) приводит к возникновению температурных деформаций во внутреннем слое. Являясь заполнением каркаса, при стесненных температурных деформациях внутренний слой подвержен трещинообразованию. Чаще всего трещины возникают в углах оконных и дверных проемов.

Читать еще:  Как крепить плитный утеплитель к профлисту?

В зарубежной практике рассматриваемые вопросы разрешены давно и успешно. На рис. 6 показана типовая конструкция трехслойной стены с воздушной вентилируемой прослойкой.

Вентилирование стены и одновременно отвод конденсационной влаги в уровне перекрытий осуществляются с помощью специальных пластмассовых вкладышей, устанавливаемых в вертикальных растворных швах (рис. 6, в), а также под и над оконными и дверными проемами. Подобное решение было воплощено в конце 80-х годов ХХ века в разработанной ЦНИИСК типовой серии домов 2.130–8 (выпуски 0 и 1), в которой, в частности, предусматривались отливы из оцинкованной стали в уровне перекрытий. Такие отливы из нержавеющей стали являются атрибутом лицевого кирпичного слоя многоэтажных зданий, возводимых в США. Кроме отвода конденсата, отливы выполняют функцию водоразбрызгивающих карнизов, предотвращающих затекание в щель между лицом перекрытия и кладкой больших дождевых потоков, которые стекают по фасадам многоэтажных зданий.

Заслуживает также внимания способ отвода конденсата из внутренней полости стены (рис. 7).

Скапливаясь на гидроизоляционной пленке, уложенной между внутренним и лицевым слоями на уровне перекрытий, конденсат отводится с помощью специальных фитилей из влагопоглощающих материалов.

В заключение следует отметить, что обеспечение надежного вентилирования слоистых каменных стен существенно повышает их качество и долговечность. Это доказано научными исследованиями и многолетним опытом их эксплуатации в странах Европы. Апробированные технические решения слоистых стен надлежит внедрять и в Республике Беларусь. При этом необходимо помнить, что обеспечению надежного вентилирования стен должны предшествовать соответствующие теплотехнические расчеты для конкретных климатических условий эксплуатации зданий.

1. Ahrert, R., Krause, K. Tipische Baukonstruktionen von 1860 bis 1960, Band 1. – Berlin, 2008. – 216 s.
2. Слоистые кладки в каркасно-монолитном строительстве // Технологии строительства. – 2009. – № 1 (63).
3. Ищук, М.К. Отечественный опыт возведения зданий с наружными стенами из облегченной кладки. – М.: РИФ “Стройматериалы”, 2009. – 360 с.
4. Лобов, О.И., Ананьев, А.И. Долговечность наружных стен современных многоэтажных зданий // Жилищное строительство. – 2008. – № 8. – С. 48–52.
5. СНиП 23–02–2003 Тепловая защита зданий. Госстрой России. – М., 2004. – 61 с.
6. ТКП 45–2.04–43–2006 Строительная теплотехника. Министерство архитектуры и строительства Республики Беларусь. – Мн., 2007. – 32 с.

Преимущества использования PIR-теплоизоляции с теплоотражающим покрытием

Большинство застройщиков заинтересованы в повышении энергоэффективности загородного дома. Помимо уменьшения расходов на энергоносители, слой утеплителя повышает комфортность проживания в коттедже. Т.к. современный строительный рынок предлагает массу теплоизоляционных материалов, покупатели хотят выбрать наиболее эффективный продукт. Такая теплоизоляция должна иметь низкий коэффициент теплопроводности, долгий срок службы, устойчивость к влаге и отражать тепловой поток внутрь помещения. Это позволяет сократить теплопотери и, тем самым, увеличить теплоэффективность ограждающей конструкции.

Поэтому в рамках данной статьи мы ответим на следующие вопросы:
• Почему PIR-теплоизоляция это — энергоэффективный утеплитель.
• Как фольгированный слой, за счет отражения, дополнительно сохраняет тепло.
• Как рассчитать экономическую выгоду утепления PIR-теплоизоляцией.

С каждым годом увеличивается стоимость энергоносителей и не всем доступен магистральный газ. В связи с этим перед любым владельцем загородного дома возникает вопрос, как сократить затраты на отопление. Одним из вариантов может стать строительство энергоэффективного дома, где все потери тепла сведены к минимуму.

Это тем более актуально, т.к. в соответствии с приказом Минстроя России от 17.11.2017 №1550 «Об утверждении Требований энергетической эффективности зданий, строений, сооружений», в РФ взят курс на последовательное уменьшение удельного расхода тепловой энергии на отопление и вентиляцию. Из приказа следует, что одним из методов снижения энергопотребления, т.е. сохранения энергии, является применение эффективной теплоизоляции.

Но, помимо самого слоя теплоизоляции, при утеплении стен изнутри, например, каркасных домов, лоджий, балконов, а также бань и саун, не следует забывать о роли в общем теплосопротивлении конструкции лучистого теплообмена.

Антон Борисов Специалист компании ТЕХНОНИКОЛЬ

Согласно классической теории теплопередачи, одной из её составляющих, наряду с теплопроводностью и конвекцией, является тепловое излучение (также называемое лучеиспускание, радиация, инфракрасные лучи и т.д.). Этот способ представляет собой теплоперенос в виде электромагнитных волн с двойным взаимным превращением тепловой энергии в лучистую на поверхности тела, излучающего тепло, и лучистой энергии в тепловую на поверхности тел, поглощающих лучистую теплоту. Т.е. часть тепла, которое стремится вырваться наружу, отражается блестящими, фольгированными поверхностями и остается внутри помещений.

Ограничение передачи лучистой энергии является существенным резервом повышения тепловой защиты строительных ограждающих конструкций.

О важности учета этой составляющей говорится в ГОСТ Р 56734-2015 «Национальный стандарт Российской Федерации. Здания и сооружения. Расчет показателя теплозащиты ограждающих конструкций с отражательной теплоизоляцией».

Важно: Настоящий стандарт устанавливает методы расчета сопротивления теплопередаче наружных ограждающих конструкций помещений жилых, общественных, административных, бытовых, сельскохозяйственных, производственных зданий и сооружений с отражательной теплоизоляцией (а также замкнутой воздушной прослойки), применение которой позволяет повысить их тепловую защиту.

Прежде чем разобраться в экономической целесообразности использования PIR-теплоизоляции с отражающей поверхностью, нужно понять, что это за материал.

belka605 Участник FORUMHOUSE

В интернете я увидел PIR-утеплитель на основе жесткого полиуретана — полиизоцианурата. Снаружи плит с двух сторон есть обкладка из фольги. Характеристики материала по теплопроводности лучше, чем у ППС и ЭППС. При воздействии огня утеплитель не горит, а обугливается его внешний слой и, тем самым, появляется защитный слой, препятствующий горению внутренних слоёв полимера. Так ли это на самом деле, и вообще, что это за материал, и для чего нужна фольга?

PIR-утеплитель — это современный теплоизоляционный материал, обладающий одним из самых низких коэффициентов теплопроводности λ= 0,021 (Вт/м∙К*). Материал практически не впитывает влагу, не гниёт, не подвержен биопоражениям и сохраняет свои теплоизоляционные свойства на протяжении всего срока службы – более 50 лет. Одним из достоинств PIR является то, что его можно отнести к классу отражательной теплоизоляции.

*Теплопроводность, измеренная в течение 24 часов с момента выпуска продукции

Эффективность PIR-теплоизоляции выражается в экономии внутреннего пространства за счет применения меньшей толщины теплоизоляционного материала (ТИМ). Так, разница в требуемых толщинах тепловой изоляции из разных материалов будет напрямую зависеть от коэффициентов теплопроводности. Т.е., чтобы хорошо утеплить балкон, потребуется меньший слой утеплителя, а это прямая экономическая выгода, за счет сохранения внутренней полезной площади.

Утепляя PIRом среднестатистический балкон, можно получить выигрыш в пространстве более 0,5 кв. м.

Еще одно отличие PIR — технологическое покрытие с обеих сторон специальной алюминиевой паро/гидронепроницаемой фольгой, обладающей низким коэффициентом излучения поверхности (менее 0,5 Вт/м 2 К 4 ). По сравнению с большинством представленных на рынке заменителей фольги, выполненных из лавсана с нанесением металлического напыления, важным преимуществом полноценной алюминиевой фольги является низкая относительная степень черноты в инфракрасной области (коэффициент отражения 95-98%). Так как фактор эмиссивности материала, т.е. поглощения лучей, чрезвычайно мал, в строительных конструкциях, утепленных PIR, происходит существенное ограничение лучистой составляющей теплопереноса.

Такие конструкции обладают «тепловым эффектом термоса», приводящим к снижению теплопотерь и значительной экономии энергоресурсов. Еще одним достоинством материала являются наличие замковых соединений в виде L-кромок, что повышает герметичность стыкования плит и возможность использования внутреннего фольгированного слоя утеплителя как надежного пароизоляционного слоя.

Наибольшего эффекта от отражательной изоляции можно добиться в тех областях строительства, где есть внутреннее лучистое тепло, которое можно вернуть обратно в утепленное помещение. При этом важным условием является наличие воздушного зазора между утеплителем и внутренней отделкой.

Ключевой показатель повышения эффективности изоляции с фольгированием – повышение термического сопротивления воздушной прослойки, находящейся снаружи от фольгированного утеплителя.

Особенности расчета ограждающих конструкций, утеплённых PIR-теплоизоляцией

Чтобы разобраться в нюансах расчета термического сопротивления стены, имеющей воздушную прослойку и теплоотражающий слой PIR нужно понять, что теплообмен включает в себя три вида передачи тепла:

  • теплопроводность;
  • конвекцию;
  • излучение.

Теплопроводность — теплофизическая характеристика материала — т.е. свойство передавать теплоту за счет непосредственного соприкосновения между частицами материала и численно равная плотности теплового потока через поверхность, перпендикулярную тепловому потоку в материале при градиенте температуры 1 Вт/°C.

Конвекция — перенос теплоты движущимися частицами жидкости или газа, обусловленный разностью температур и разной плотностью среды.

Излучение — перенос энергии в виде электромагнитных волн между двумя взаимно излучающими поверхностями, обусловленный температурой и оптическими свойствами поверхностей, излучающих тел.

Читать еще:  Зачем утеплять дымоходную трубу снаружи?

За основу для расчета принимаем конструкцию балкона, утепленного PIR-теплоизоляцией изнутри.

Номер слоя
изнутри
наружу

Обшивка с
внутренней
стороны
евровагонкой

Толщина — 13 мм λБ =0,18 Вт/(м°С) Коэффициент излучения поверхности — 4,44 Вт/(м 2 К 4 )

Замкнутая
воздушная
прослойка

Толщина 20(50) мм Термическое сопротивление – 0,14 м 2 °С/Вт

Толщина 40 мм
λБ =0,023 Вт/(м°С)
Коэффициент излучения поверхности —
0,37 Вт/(м 2 К 4 )

Экран
лоджии/балкона —
кладка из
полнотелого
кирпича

Толщина 1 кирпич или 250 мм
λБ =0,81 Вт/(м°С)

Температура
внутреннего
воздуха составляет
20 C

Таким образом, на основе последовательного теплотехнического расчёта многослойной стены с учётом последовательного отражения и поглощения лучистого потока, можно вычислить фактическое термическое сопротивление воздушных прослоек, с одной стороны которых расположена фольгированная теплоизоляция.

Теплотехнический расчет воздушной прослойки определенной толщины следует проводить с учетом многократного отражения и поглощения тепловой энергии.

Данные расчетов и величины теплосопротивления приведены в таблице ниже.

Термическое сопротивление воздушной прослойки

Воздушная прослойка как утеплитель

121099 Москва,
Новинский бульвар, дом 11.
Телефоны и факсы:
(095) 755-77-70, 252-53-92
Авторы:Нина Умнякова,
Александр Матвиевский.

Как лучше утеплять стены — снаружи или изнутри?

Стены построенного дома, не обеспечивающие достаточный уровень теплозащиты, нуждаются в утеплении. Для этого используют различные теплоизоляционные материалы, располагая их с наружной или внутренней стороны стены.

Следует обратить внимание на тот факт, что при внутреннем утеплении практически невозможно установить теплоизоляционный материал в местах примыкания перекрытий к наружной стене. Здесь образуются «мостики холода», причем потери тепла в этих зонах могут превышать потери через остальную площадь стены (рис. 2).

При наружном утеплении снижение температуры по толщине существующей стены происходит достаточно медленно и плавно. Резкое падение температуры наблюдается ближе к наружной стороне, а зона отрицательных температур располагается в толще слоя дополнительной теплоизоляции (рис.3).

Расположение плотных, плохо пропускающих водяные пары материалов изнутри, а легких и пористых снаружи благоприятно влияет на влажностный режим стены и не создает условий для скопления в ней влаги. Если теплоизоляционный материал надежно защищен от атмосферных воздействий (дождя, снега, солнечной радиации), такая стена в течение всего года сохраняет высокие теплозащитные свойства.

Сточки зрения поддержания нормального температурно-влажностного режима утепление с наружной стороны стены является оптимальным. Однако этот процесс отличается повышенной сложностью и трудоемкостью, требует тщательного подбора отделочных материалов, а также штукатурных и клеевых составов. Выполнение работ желательно поручить специалистам, хорошо знакомым с особенностями различных систем утепления. Наружное утепление с использованием штукатурных фасадных систем может выполняться только квалифицированными специалистами, имеющими лицензию на производство этих работ.

Существующие конструктивные решения по защите утеплителя можно разделить на две группы:

  • системы утепления фасадов с вентилируемой воздушной прослойкой (так называемые «вентилируемые фасады»);
  • штукатурные системы наружного утепления.
Системы наружного утепления фасадов с вентилируемой воздушной прослойкой.
Облицовка стен кирпичом и мелкими блоками.

Деревянные и кирпичные стены для повышения уровня теплозащиты часто облицовывают с наружной стороны кирпичом, мелкими блоками, керамическими или бетонными камнями. В качестве утепляющего материала используют плиты из минеральной или стекловаты, размещаемые в пространстве между облицовкой и существующей стеной, и предусматривают вентилируемую воздушную прослойку толщиной 60 мм (рис. 5).

Новая стенка (облицовка) может опираться на обрез существующего фундамента (если позволяют его несущая способность и ширина) или на специально подведенный для нее фундамент. Поверх цоколя укладывают гидроизоляционный материал с перехлестом полотнищ не менее 100 мм.

Деревянные дома из бруса также облицовывают кирпичом, керамическими и бетонными камнями или мелкими блоками.

Утепляющий материал размещают между деревянной стеной и облицовкой. С наружной стороны утеплителя необходимо предусмотреть вентилируемую воздушную прослойку, обеспечивающую удаление влаги из древесины (рис. 8), а также вентиляционные продухи, устройство которых описано выше. При отсутствии воздушной прослойки стены дома станут влажными, покроются плесенью, а древесина начнет быстро разрушаться.

Облицовочную кладку соединяют со стеной из бруса при помощи металлических связей с антикоррозийным покрытием. Один конец связи закладывают в горизонтальный шов кладки, другой крепят к брусу. Приступать к облицовке стен из бруса кирпичом желательно через год-полтора после возведения коробки, когда древесина полностью высохнет.

Для повышения теплозащиты деревянных каркасных домов их тоже можно обложить с наружной стороны кирпичом или каменными блоками (рис. 9).

Вентилируемые фасады с навесной защитной облицовкой.

Последовательность проведения работ выглядит следующим образом: на наружной поверхности стены, с шагом, соответствующим размеру утеплителя (или на 5 мм меньше), монтируют металлические направляющие со специальными кронштейнами (рис. 12) или деревянные антисептиро-ванные рейки (рис. 11), между которыми укладывают теплоизоляционный материал. Плиты утеплителя (из базальтового волокна или стекловаты) прикрепляют к стене дюбелями. Затем устанавливают ветрозащитный па-ропроницаемый материал. В случае использования утепляющих плит, покрытых стеклохолстом, или плит из минеральной ваты высокой плотности, ветрозащитный материал не применяют. На рейки или кронштейны навешивают защитную облицовку: цементные доски или плитки различных цветов и фактуры, цементнофибролитовые плитки, облицовочные листы или панели, сайдинг, гранитные или мраморные плитки, профилированные листы. Между утеплителем и облицовкой обязательно предусматривают вентилируемую воздушную прослойку толщиной не менее 60 мм и не более 150 мм.

Каркас навесного фасада должен быть прочным, легким и обладать некоторой подвижностью, необходимой для компенсации изменения линейных размеров облицовочных элементов, обусловленного колебаниями температуры. Всем этим требованиям отвечает каркас, собранный из перфорированных алюминиевых профилей и монтажных элементов U-образной формы. Во избежание расшатывания соединений в навесных фасадах отверстия, предназначенные для установки болтов или винтов, должны строго соответствовать диаметру устанавливаемого крепежного элемента.

Другой способ монтажа облицовки основан на применении горизонтального алюминиевого профиля, прикрепляемого к вертикально установленным антисептированным брускам (рис. 14) или металлическим уголкам, которые крепятся к поверхности стены с помощью кронштейнов (рис. 15). Процесс облицовки начинают с установки панелей на нижний несущий профиль. Каждый последующий ряд облицовочных панелей опирается на промежуточный алюминиевый профиль.

Рекомендации по выбору толщины утеплителя (в зависимости от материала и толщины утепляемой стены) приведены в таблицах N1 (рис.17) и N2 (рис.18).

Деревянные брусчатые стены можно утеплить с наружной стороны путем устройства защитной облицовки по деревянным брускам (См. таблицу N 3 и рис. 20)

Штукатурные системы утепления фасадов.

Этот вид утепления представляет собой не набор отдельно взятых строительных материалов утеплителя, клеящих и штукатурных составов, дюбелей и сеток, а единую систему, все элементы и детали которой подобраны определенным образом, обеспечивающим длительную совместную работу всех составляющих. По этой причине для утепления фасадов могут использоваться только сертифицированные штукатурные системы, а сами работы должны выполняться специалистами, хорошо знакомыми с технологией производства работ. Планируя сроки проведения работ, необходимо учитывать, что наружное утепление стен с последующим оштукатуриванием предполагает использование мокрых процессов, которые должны производиться при температуре наружного воздуха не ниже +5°C.

Жесткие плиты из минеральной ваты на основе базальтового волокна или стекловаты, чаще всего применяемые для утепления наружных стен, наклеивают вплотную друг к другу (рис. 22) без образования щелей, обеспечивая перевязку стыков (по типу кирпичной кладки).

Крепление плит утеплителя к стене производится механическим способом с помощью распорных дюбелей-втулок, полиамидных дюбелей и пластмассовых дюбелей «тарельчатого» типа из расчета 8 -12 дюбелей на 1 м 2 поверхности. Дюбеля должны быть заглублены в толщу бетонных стен на 35-50 мм, кирпичных — на 50 мм, в кладку из пустотного кирпича и легкобетонных блоков — на 90 мм.

Армирующую сетку укладывают поверх прикрепленных к фасаду плит с перехлестом полотнищ на ширину 100 мм (рис. 23).

При утеплении углов необходимо обеспечить перевязку торцов теплоизоляционных плит и защитить их металлическим перфорированным уголком для предохранения кромок углов от сколов (рис.25).

Необходимо обратить особое внимание на качество горизонтальной гидроизоляции между цоколем и утепляемой стеной (рис.27).

В местах примыканий штукатурной системы утепления к карнизу верхняя часть утеплителя должна быть защищена специальной уплотнительной лентой (рис. 28).

Необходимая толщина слоя утеплителя (табл. 4) зависит от конструкции утепляемой стены и вида утепляющего материала. (рис.29)

Другие статьи по этой теме:

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×