11 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Защита корня шва при аргонодуговой сварке

ЦЕНТР ЗНАНИЙ ЭСА

ЗАЩИТА СВАРНОГО ШВА

ЗАЩИТА СВАРНОГО ШВА

Основными задачами защитного газа являются защита сварочной ванны от воздействия атмосферы, а именно от окисления и поглощения азота, а также стабилизация электрической дуги. Выбор защитного газа может также повлиять на характеристики профиля провара шва.

Защитные газы

Защитные газы для процессов MIG/GMAW сварки

Основным газом для MIG/MAG сварки является аргон (Ar). Гелий (He) можно добавлять для увеличения глубины проплавления и текучести сварочной ванны. Аргон или смесь аргона с гелием можно использовать для сварки всех сортов стали. Однако для стабилизации дуги, улучшения текучести, а также для улучшения качества наплавленного металла, как правило, требуется незначительное добавление кислорода (O2) или углекислого газа (CO2). Также для сварки нержавеющей стали имеются газы с небольшим содержанием водорода(H 2).

В таблице ниже приводится список подходящих защитных газов для MIG/MAG сварки, в зависимости от типов нержавеющей стали и типов дуги.

Основной металл (тип материала)

Аустенитная нержавеющая сталь

Дуплексная нержавеющая сталь

Супердуплексная нержавеющая сталь

Ферритная нержавеющая сталь

Высоколегированная нержавеющая сталь

Ar + 30% He + (1-2)% CO 2 d

a) Предпочтительно для импульсной MIG сварки.
b) Более высокая текучесть сварочной ванны по сравнению с добавлением CO2.
c) За исключением 22.12.HT и 27.31.4.LCu, где предпочтительнее Ar.
d) Не подходит для сварки в режиме струйного переноса, где требуется сверхнизкое содержание углерода.
e) Лучшие показатели сварки короткой дугой и позиционной сварки по сравнению с Ar + (1-2)% O2.
f) Более высокая текучесть сварочной ванны по сравнению с Ar. Лучшие показатели сварки короткой дугой и позиционной сварки по сравнению с Ar + (1-2)% CO2.
g) Для сортов стали, легированных азотом.

Защитные газы для процессов TIG/GTAW сварки

Основным газом для TIG сварки является аргон (Ar). Гелий (He) можно добавлять для увеличения глубины проплавления и текучести сварочной ванны. Аргон или смесь аргона с гелием можно использовать для сварки всех сортов стали. В некоторых случаях можно добавлять азот (N2) и/или водород (H2) для получения определенных свойств. Например, добавление водорода оказывает.

схожий с добавлением гелия эффект, но намного сильнее. Тем не менее, водород не следует использовать при сварке мартенситных, ферритных или дуплексных сортов стали.

Кроме того, в случае добавления азота можно улучшить свойства наплавленного металла при сварке сплавов, легированных азотом. Окисляющие добавки не используются, так как они разрушают вольфрамовый электрод. В таблице ниже проводятся рекомендации по выбору защитного газа для TIG сварки разных сортов нержавеющей стали. При плазменно-дуговой сварке типы газов с добавлением водорода в основном используются в качестве плазменного газа, а чистый аргон — в качестве защитного.

Технология ручной аргонодуговой сварки труб

Технологические варианты

  • сварной шов полностью выполняется ручной аргонодуговой сваркой неплавящимся электродом (рекомендуется при толщине стенки до 3 мм);
  • сварной шов выполняется комбинированным способом: корневой шов — ручной аргонодуговой сваркой неплавящимся электродом, а последующие слои — ручной дуговой сваркой покрытым электродом (целесообразен при толщине стенки трубы 4 мм и более).

Ориентировочное расположение слоев и валиков (1 — 8) в стыках, сваренных по различным технологическим вариантам

ВариантТолщина стенки* свариваемых труб, мм
До 4Свыше 4 до 7Свыше 7 до 10
КомбинированнаяВертикальный стык
Аргонодуговая
Комбинированная
Аргонодуговая

* При толщине стенки до 2 мм сечение стыка следует сваривать в один слой

Ручная аргонодуговая сварка неплавящимся W-электродом применяется для неповоротных стыков труб из низкоуглеродистых, низколегированных и легированных (коррозионностойких) сталей. Диаметр свариваемых труб — менее 100 мм, толщина стенки — до 10 мм.

Выбор параметров режима

Сварочный ток выбирают: при однопроходной сварке — в зависимости от толщины стенки трубы, а при многопроходной — исходя из высоты валика, которая должна составлять 2 — 2,5 мм. Сварочный ток назначают из расчета 30 — 35 А на 1 мм диаметра электрода.

Напряжение на дуге должно быть минимальным, что соответствует сварке короткой дугой.

Скорость сварки регулируют так. чтобы гарантировались проплавление кромок и формирование требуемых размеров шва.

Расход защитного газа зависит от марки свариваемой стали и токового режима (от 8 до 14 л/мин).

Присадочная проволока диаметром 1,6-2 мм выбирается но марке свариваемой стали (см. статью Сварочные материалы).

Ориентировочные режимы

Диаметр W-электрода, мм

Диаметр присадка, мм

Сварочный ток, А

Напряжение на дуге, В

Расход газа, л/мин

Минимальные режимы по току в зависимости от марки W-электрода

Диаметр W-электрода, мм

Постоянный ток (А) полярности

Переменный ток, А

Сварку начинают сразу же после установки прихваток, которые при выполнении первого слоя нужно переплавить. В труднодоступных местах первый корневой шов можно выполнять без присадочной проволоки, если зазор и смешение кромок не превышают 0,5 мм, а притупление кромок не более 1 мм. Исключение составляют стыки труб из сталей 10 и 20, которые всегда нужно сваривать с присадкой.

Очередность наложения слоев при сварке одним сварщиком неповоротного стыка

Зажигать и гасить дугу следует на кромке трубы или на уже наложенном шве на расстоянии 20-25 мм от конца шва. Подачу аргона прекращают спустя 5-8 с после обрыва дуги.

Сварку трубопроводов из высоколегированных, особенно коррозионностойких, сталей выполняют с защитой корня шва либо подачей аргона внутрь трубы, либо применяя флюс-пасту ФП8-2.

При сварке высоколегированных сталей нужно соблюдать ряд условий:

  • минимальные токовые режимы;
  • короткая сварочная дуга;
  • максимальная скорость сварки без перерывов и повторного нагрева одного и того же участка металла;
  • избегать поперечных колебаний горелки;
  • присадочную проволоку следует подавать равномерно, чтобы не создавать брызг расплавленного металла, которые, попав на основной металл, могут вызвать впоследствии очаги коррозии

На толстостенных (более 10 мм) трубопроводах диаметром более 100 мм из низкоуглеродистых и низколегированных сталей корневой шов сваривают аргонодуговым способом без остающихся подкладных колец.

Сварку следует вести обратноступенчатым способом участками длиной не более 200 мм. Высота корневого шва должна быть не менее 3 мм. При этом необходимо обеспечить плавные переходы к поверхности трубы.

Направление и очередность укладки корневого слоя

Аргонодуговую сварку используют также, когда приваривают подкладное кольцо в трубах из углеродистых и низколегированных ст алей. Кольцо плотно, но без натяга, устанавливают в трубу, оставляя зазор между кольцом и внутренней поверхностью трубы не более 1 мм. Кольцо прихватывают снаружи угловым швом длиной 15-20 мм с катетом 2.5-3 мм к трубам диаметром до 200 мм в двух местах, а большего диаметра в трех-четырех местах.

Прихватку, независимо от марки стали трубы и подкладного кольца, выполняют с присадочной проволокой Св-08Г2С диаметром 1,6-2 мм. Подкладное кольцо приваривают однослойным угловым швом с катетом 3-4 мм с тем же присадком.

Читать еще:  Как варить горизонтальный шов электросваркой?

Прихватку и приварку подкладного кольца делают без предварительного подогрева независимо от марки стали и толщины стенки трубы. Исключение составляют трубы из стали 15Х1М1Ф с толщиной стенки более 10 мм — конец такой трубы подогревают до 250 — 300 °С.

Аргонодуговая сварка титана

Изготовление изделий из титана при помощи сварки в настоящее время является обычным процессом для многих производителей. Давно признано, что титан не является экзотическим металлом и не требует для его сварки особенных процессов и технологий. Понятно, что титан сваривается так же, как и другие высококачественные металлы, при условии принятия во внимание его уникальных свойств.

Существуют важные различия между титаном и сталью:

— низкая плотность титана
— низкий модуль упругости
— высокая температура плавления титана
— низкая пластичность титана

Компенсация этих различий позволяет сварку титана и его сплавов, используя методы, аналогичные, например, сварке нержавеющей стали или сплавов на основе никеля.

В этой статье мы рассмотрим общие операции и технологии, используемые при сварке титана. Предоставленная информация предназначена для использования в качестве руководящих принципов.

Требование к сварочному рабочему месту при сварке титана

Титан является химически активным металлом, который образует сварное соединение с менее оптимальными свойствами. Поверхность титана содержит хрупкие карбиды, нитриды и оксиды, каждый из которых, нагреваясь и охлаждаясь на воздухе, может снизить сопротивление усталости и прочность сварного шва и зоны термического влияния. Мало того, что требуется постоянная защита свариваемой поверхности, необходимо также защита обратной стороны сварного шва.

При сварке титана и его сплавов требуется уделить особое внимание чистоте рабочего места. Для сварочных цехов, где производятся работы с различными металлами, необходимо выделить специальную область, которая будет использоваться специально для сварки титана. Место, отведенное для этого, должно быть защищено от потоков воздуха, влаги, пыли, жира и других загрязнений, которые могут препятствовать качественной сварке. Это место должно быть защищено от воздействия таких процессов, как зачистка, резка и окраска. Кроме того, должна быть под контролем и влажность воздуха.

Процессы аргонодуговой TIG и полуавтоматической MIG сварки титана

Титан и его сплавы свариваются несколькими процессами. Наиболее частым видом сварки является аргонодуговая сварка TIG вольфрамовым электродом и полуавтоматическая MIG сварка. Так же можно встретить применение таких процессов как плазменная сварка, электронно-лучевая сварка и сварка трением, но эти процессы используются в ограниченной степени. Описанные в этой статье технологии сварки титана и основные принципы будут касаться в первую очередь TIG и MIG сварки титана.

При правильной технологии сварки титана, получаемые сварные соединения являются коррозионно-стойкими, как и основной металл. Наоборот, неправильно сваренные швы могут стать хрупкими и менее коррозионно-стойкими по сравнению с основным металлом.

Технологии и оборудование, используемые при сварке титана аналогичны тем, которые требуются для других высококачественных материалов, таких как нержавеющая сталь или сплавы на основе никеля. Титан, однако, требует большего внимания к чистоте и использованию вспомогательного инертного газа. Расплавленный металл сварного шва титана должен быть полностью защищен от взаимодействия воздуха. Кроме того, горячая околошовная зона и корень сварочного шва должны быть постоянно защищены также и во время остывания до температуры 427 °C.

Процесс TIG может быть использован для стыковых соединений без подачи присадочного материала при толщине листа примерно до 3 мм. Сварка более толстого металла, как правило, требует использования присадочного металла и разделки кромок. Тут уже можно использовать TIG сварку с подачей проволоки илиполуавтоматическую MIG сварку. Полуавтоматическая сварка является наиболее экономичной и производительной при толщинах титана от 10 мм. Если используется процесс TIG, то следует проявлять осторожность, чтобы предотвратить контакт вольфрамового электрода со сварочной ванной. Тем самым предотвращая попадание частиц вольфрама в сварочный шов.

Источники питания

Источник питания постоянного тока DC прямой полярности (DCSP) используется для TIG сварки титана. Для MIG сварки требуется источник тока обратной полярности (DCRP). На сварочной горелке должно быть дистанционное управление силой тока, чтобы не нарушать процесс сварки и контролировать охлаждение сварного шва при помощи защиты инертным сварочным газом. Желательной характеристикой аппарата для TIG сварки титана является ножная педаль управления током, высокочастотным зажиганием и таймерами защитного газа, для предварительного и окончательного продува.

Инертный защитный газ

Защита должна быть постоянной для титановых сварных соединений до их остывания до температуры 427 °C, а также расплавленной сварочной ванны в целях предотвращения взаимодействия с воздухом. Как для TIG сварки, так и для MIG сварки в качестве защитного газа и для обеспечения необходимой защиты применяется аргон или гелий.

Защитный газ необходим:

  • Первичная защита расплавленной сварочной ванны
  • Вторичная защита охлаждающегося расплавленного металла и околошовной зоны
  • Защита обратной стороны сварочного шва

Первичная защита расплавленной сварочной ванны

Первичная защита обеспечивается правильным выбором сварочной горелки. Горелки для аргонодуговой TIG сварки титана и его сплавов должны быть оснащены большим (18-25 мм) керамическим соплом и газовой линзой.

Сопло должно обеспечивать адекватную защиту для всей расплавленной сварочной ванны. Газовая линза обеспечивает равномерный, не турбулентный поток инертного газа.

Как правило, для первичной защиты используется аргон из-за его лучших характеристик стабильности дуги. Аргонно-гелиевые смеси могут быть использованы при более высоком напряжении и для большего проникновения в металл.

Определение расхода и эффективность сварочного газа для первичной защиты должны быть проверены до начала сварочных работ на отдельной титановой пластине. Незагрязненные, т.е. защищенные сварные швы должны быть яркие и серебристые по внешнему виду.

Вторичная защита охлаждающегося расплавленного металла и околошовной зоны

Вторичная защита наиболее часто происходит посредством специальной насадки на сварочную горелку – так называемого «сапожка». Насадки, как правило, изготавливаются на заказ, чтобы соответствовать определенной сварочной горелке и конкретной операции сварки.

Дизайн насадки должен быть компактным и должен способствовать равномерному распределению инертного газа внутри устройства. Следует учитывать также возможность водяного охлаждения, особенно для больших насадок.

Наличие в насадке медных или бронзовых диффузоров способствуют не турбулентному потоку инертного газа для защиты.

Защита обратной стороны сварочного шва

Основная цель устройства для защиты обратной стороны сварного шва заключается в обеспечении защиты инертным газом корневой части шва и околошовной зоны. Такими устройствами обычно являются медные подкладки. С водяным охлаждением или массивные металлические болванки, также могут быть использованы в качестве радиаторов для охлаждения сварных швов. Эти подкладки имеют канавку, которая расположена непосредственно под сварным швом. Для защиты с обратной стороны, как правило, требуется поток сварочного газа вдвое меньший, чем для первичной защиты.

Читать еще:  Количество сварных швов на длину трубы

Важно использование отдельных газовых редукторов для первичной, вторичной и защиты с обратной стороны. Таймеры и электромагнитные клапаны управляют продувкой до и после сварки.

Очистка поверхности и присадочного металла перед сваркой

Перед сваркой титана, важно, чтобы сварные швы и прутки (проволока) были очищены от окалины, грязи, пыли, жира, масла, влаги и других возможных загрязнений. Включение этих загрязнений в титан может ухудшить свойства и коррозионную стойкость сварочного соединения. Если пруток кажется грязным, протирка его нехлорированным растворителем перед использованием является хорошей практикой. В тяжелых случаях при особых загрязнениях может быть необходима очистка кислотой. Все поверхности сварного соединения и околошовной зоны на расстояние 25 мм должны быть очищены. Растворители особенно эффективны в удалении следов жира и масла. Очистка металла должна проводиться щеткой из нержавеющей стали. Ни при каких обстоятельствах не используйте стальные щетки из-за опасности внедрения в поверхность титана частиц железа и его дальнейшей коррозии.

Технология TIG сварки титана и его сплавов

В дополнение к чистоте свариваемой поверхности и присадочного металла, соответствующих параметров сварки, а также надлежащего инертного защитного газа, требует внимания техника сварки. Неправильная техника может быть источником появления сварных дефектов. Перед началом сварки, должны быть сделана продувка горелки, защитной насадки и подкладки для обратной стороны шва, чтобы убедиться, что весь воздух удален из системы. Для зажигания дуги должно быть использовано высокочастотное зажигание. Царапины, от вольфрамовых электродов являются источником вольфрамовых включений в сварных швах титана. Затухание дуги в конце сварки должно происходить плавным спаданием тока. Защита шва и околошовной зоны должна быть продолжена до охлаждения титана до температуры ниже 427 °C.

Вторичная и защита корня шва также должны быть продолжены. Сварной шов желтоватого или синего цвета указывает на преждевременное снятие защитного газа. Предварительный нагрев при сварке титана обычно не требуется. Однако если подозревается наличие влаги, из-за низких температур или высокой влажности, нагрев может быть необходимым. Нагрева газовой горелкой сварных поверхностей до 70 °C, как правило, достаточно, чтобы удалить влагу.

Длина дуги для TIG сварки титана без присадочной проволоки должна быть примерно равна диаметру вольфрамового электрода. Если добавляется присадка, то максимальная длина дуги должна быть около 1-1,5 диаметра электрода.

Цвет сварочного шва титана отображает его качество

Очистка между проходами не требуется, если сварной шов остается ярким и серебристый. Швы желтоватого или голубого цвета могут быть удалены проволочной щеткой из нержавеющей проволоки. Некачественные сварные швы, о чем свидетельствует темно-синий, серый или белый порошкообразный цвета, должны быть полностью удалены путем зачистки. Соединение затем должно быть тщательно подготовлено и снова очищено перед сваркой.

Как видно из этой статьи, сварка титана и его сплавов это не такая сложная наука, и используя указанные правила и технологии можно добиться высококачественных швов без особых усилий. Основой технологии сварки титана является подготовка соединения и материала перед сваркой и защита сварочного шва, его обратной стороны и околошовной зоны. В остальном сварка титана очень похожа на сварку других металлов, но только требует разное распределение времени в процессе. В то время как при сварке стали 30% времени уходит на подготовку и 70% на саму сварку, при сварке титана как раз наоборот: 70% на подготовку и 30% на сварку.

Флюс для защиты корня шва ESAB Stain Flux

Больше 600 тонн сварочных материалов в наличии

Развитая логистичесткая система из 14 складов

На все товары предоставляется гарантия

Предоставляем услуги по гарантийному обслуживанию

Флюс StainFlux наносится на корень шва перед сваркой и обеспечивает защиту от окисления, которое происходит в течение сварки.StainFlux предназначен для использования при аргонодуговой сварке низколегированных и нержавеющих сталей с максимальным содержанием никеля 25 %.StainFlux не предназначен для замены защитного газа.StainFlux поставляется в порошковой форме и смешивается с денатурированным этанолом перед сваркой.

Stain Flux наносится на обратную сторону заготовки перед свариванием и защищает свариваемый металл от окисления в ходе сварки. Stain Flux разработан специально для TIG сварки низколегированных и высоколегированных сталей с содержанием никеля до 25%, но также может быть применен и при сварке другими методами. Stain Flux не может полностью заменить защитный газ. Stain Flux предпочтительнее применять там, где не может быть обеспечен поддув защитного газа. С помощью Stain Flux достигается гораздо более качественный результат, чем без защиты обратного валика, но не такой высокий как при использовании аргона, в качестве защитного газа, подаваемого с обратной стороны.
Результаты тестирования (ASTM G48):
? Потеря массы металла при полной защите в среде аргона — 100% (за 100% принимаем потери массы при полной аргоновой защите)
? Потеря массы при использовании Stain Flux — 180% (значительно лучше, чем без защиты обратного валика)
? Потеря массы при отсутствии защиты обратного валика — 318%
Характеристики:
Stain Flux поставляется в форме порошка, который следует смешать с денатурированным этанолом перед использованием. Отличительной особенностью продукта является способность устранять включения оксидов и предотвращать окисление вследствие термического нагрева во время сварки. Stain Flux может заменять защитный газ (особенно в случаях, когда конструктивные особенности изделия не позволяют обеспечить поддув аргона с обратной стороны, использовать специальные заглушки и керамические подкладки. Stain Flux также поддерживает сварочную ванну снизу и способствует равномерному отводу тепла. К тому же он химически очищает поверхность, тем самым позволяя избежать включений в сварочный шов.

Способ применения Stain Flux

1. Смешайте Флюс в следующей пропорции: 500 г флюса с 210-250 г денатурированного этанола.
2. Перемешивая, добавляйте 210-250г денатурированного этанола до тех пор, пока не получится плотная густая паста, кремообразной консистенции.
3. Дайте пасте настояться несколько минут.
4. Обезжирьте поверхность стали органическим растворителем.
5. Нанесите пасту с помощью кисти на обратную сторону шва. Паста должна быть нанесена ровным слоем на поверхности, которые должны быть сварены, с учетом предполагаемого направления сварки.
6. Сваривайте.

Области применения:

Контактная сварка:
Stain Flux наносится на свариваемые поверхности перед сборкой. Stain Flux выполняет функции очистки, предотвращая образование оксидов вследствие нагрева металла вблизи зоны сварки. Этот процесс исключает опасность загрязнения сварочного шва и облегчает расплавление металла в точке контакта, что в итоге облегчает весь процесс контактной сварки.
Служит защитной прокладкой во время сварки:
Stain Flux выполняет несколько важных функций во время сварки — Защита сварочной ванны от окисления,
— Сварочный валик может быть сформирован с высоким усилением
— Стабильная скорость сварки
— Поддерживающий эффект
— Высокие показатели смачивания позволяют отводить избыточное тепло от зоны сварки и таким образом предотвращает неконтролируемое проплавление и прожигание металла.
— Отверстия малых диаметров защищены равномерным нагревом и отсутствием включений.

Читать еще:  Как спаять шов на линолеуме?

Сварное соединение внахлест:
Применение Stain Flux при сварке внахлест предотвращает неконтролируемое проплавление. Равномерный нагрев и низкая скорость охлаждения предотвращают риск охрупчивания и делают сварное соединение более крепким, а процесс сварки более управляемым.

Сварка пластин различной толщины с V-образной разделкой:
Stain Flux предотвращает прожигание, когда свариваются вместе толстые и тонкие листы металла. Так как нагрев распределяется равномерно, то исключается образование зон с критической температурой в локальной области. Проплавление также становится более равномерным и единообразным.

Сварка пластин с V-образной разделкой с одной стороны:

Stain Flux увеличивает равномерность проплавления на достаточную глубину. Соединения, которые нуждались в сваривании с двух сторон, при использовании Stain Flux могут быть сварены с одной стороны.

Сварка пластин с V-образной разделкой с двух сторон:
Когда свариваются пластины большой толщины, или когда необходимо обеспечить высокое качество при сварке с двух сторон, Stain Flux применяют перед укладкой первого сварного шва.Таким образом защищенная околошовная зона не нуждается в зачистке и шлифовке при укладке следующих сварных швов. Рекомендуется произвести очистку металлической щеткой после второго прохода для удаления шлака.

Сварка низколегированных и высоколегированных сталей (композитных сталей):
Когда Stain Flux используется при сварке низколегированных и высоколегированных сталей, желательно предварительно снять фаску как со стороны низколегированной, так и со стороны высоколегированной стали. Это исключает необходимость удаления шлака и шлифовки. Когда Stain Flux используется с таким сочетанием сталей, то рекомендуется в первую очередь наносить его на высоколегированную сталь, а сварку начинать с низколегированной.

Флюс для защиты корня шва StainFlux

Описание

Флюс StainFlux наносится на корень шва перед сваркой и обеспечивает защиту от окисления, которое происходит в течение сварки.

StainFlux предназначен для использования при аргонодуговой сварке низколегированных и нержавеющих сталей с максимальным содержанием никеля 25 %.

StainFlux не предназначен для замены защитного газа. StainFlux поставляется в порошковой форме и смешивается с денатурированным этанолом перед сваркой.

Похожие товары

Сварочный флюс ESAB OK Flux 10.62

Сварочный флюс ESAB OK Flux 10.71

  • Сварка и резка
    • Резка
      • Экзотермическая резка и строжка
        • Строжка угольным электродом
        • Экзотермическая резка
        • Подводная сварка и резка
      • Ручная плазменная резка
      • Системы резки
    • Автоматизация и роботизация
    • Сварочное оборудование
      • Сварочное оборудование для MIGMAG сварки
      • Сварочное оборудование для TIG сварки
      • Сварочное оборудование для MMA сварки
      • Компоненты и расходники для сварки
        • Блоки подачи проволоки
        • Генераторы сварочные
    • Сварочные материалы
      • Химические жидкости для сварки
      • Электроды для сварки
      • Присадочные прутки
      • Флюсы и проволока
      • Прокладки керамические
      • Проволока для сварки
      • Порошковая проволока
        • Проволока газозащитная порошковая
        • Проволока самозащитная порошковая
        • Проволока металлопорошковая
    • Средства индивидуальной защиты
      • Сварочные маски и очки
      • Сварочные перчатки
      • Одежда сварщика
      • Системы вытяжки сварочных дымов
    • Сварочные аксессуары
      • Электродержатели и разъемы
      • Клеммы заземления
      • Инструменты сварщика
      • Шторы и занавесы
      • Сушильное оборудование
      • Вольфрамовые электроды
  • Профессиональный инструмент
    • Сверление
      • Аккумуляторные дрели-винтовёрты
      • Дрели
      • Корончатое сверление по металлу
      • Магнитная сверлильная стойка
      • Резьбонарезная дрель
      • Угловые дрели
    • Завинчивание
      • Аккумуляторные дрели-винтовёрты
      • Ударный винтоверт
      • FEIN AccuTec
      • Винтоверт для отделочных работ
      • Винтоверт для шурупов-саморезов
    • Шлифовка при нормальной частоте
      • Компактные угловые шлифовальные машины
      • Большие угловые шлифовальные машины
      • Прямая шлифовальная машина
    • Ленточно-шлифовальные станки
      • GRIT GX с модульной конструкцией
      • GRIT GI с модульной конструкцией
      • Ручная ленточно-шлифовальная машина GRIT GHB
      • Компактная ленточно-шлифовальная машина GRIT GKS
    • Обработка поверхностей
      • Шлифовальная машина
      • Полировальный инструмент
      • Пылесосы
    • Осциллирование
      • MultiMaster
      • SuperCut Construction
    • Обработка листового металла
      • Шпицевые ножницы
      • Листовые ножницы
      • Высечные ножницы
    • Пиление и фрезерование
      • Лобзики
      • Прорезные пилы для труб
      • Монтажная фреза
  • Технические и пищевые газы
    • Технические газы
    • Газы для пищевой промышленности
    • Газосварочное оборудование и расходные части
  • Освидетельствование баллонов и огнетушителей
  • Главная
  • О компании
    • Наши сертификаты
    • Благодарственные письма
  • Продукция
    • Сварка и резка
      • Резка
      • Автоматизация и роботизация
      • Сварочное оборудование
      • Сварочные материалы
      • Средства индивидуальной защиты
      • Сварочные аксессуары
    • Профессиональный электроинструмент
      • Сверление
      • Завинчивание
      • ленточно-шлифовальные станки
      • Шлифовка при нормальной частоте
      • Высокочастотное шлифование
      • Обработка поверхностей
      • Осцилирование
      • Обработка листового металла
      • Пиление и фрезерование
    • Технические и пищевые газы
      • Технические газы
      • Газы для пищевой промышленности
      • Газосварочное оборудование и расходники
    • Освидетельствование баллонов
  • Новости
  • Статьи
  • Контакты

© ООО «Деса Плюс», 2019. Все права защищены.

Система заглушек ОРИОН-17, с набором дисков

  • Сварка
  • Резка
  • Вспомогательное оборудование
    • Механизмы перемещения горелок
    • Сварочные вращатели (манипуляторы)
    • Столы для сборки и сварки
    • Фильтровентиляционные и вытяжные установки
    • Оборудование для заточки вольфрамовых электродов
    • Защитные камеры
    • Центраторы
    • Защитные экраны и шторки
    • Заглушки
  • Сварочные материалы
  • Наши бренды
  • Распродажа

При сварке труб из высоколегированных (нержавеющих) сталей и титана необходимо обеспечивать защиту не только с внешней стороны, но и с внутренней стороны сварного шва. Для того, что бы исключить окисление сварочной ванны в момент ее кристаллизации, а для титановых сплавов еще и до момента остывания сварного шва ниже 400 0 С.
Существует несколько способов решения данной задачи, один из которых организовать «поддув» — использовать специальную оснастку, которая позволяет доставлять и удерживать инертный газ непосредственно в районе сварного шва, а за счет выпускного клапана стравливать избыточное давление. Такой оснасткой и является модульный комплект защиты корня шва ОРИОН №17, дополнительно можно приобретать термоустойчивые уплотнения — заглушки..

— модульный комплект ОРИОН используют для газовой защиты при сварке труб , внутренний диаметр которых 19-165 мм;
— существенная экономия затрат газа и времени;
— материал теплоустойчивых дисков — силиконовая резина;
— температура использования от -50°С до + 300°С;
— быстрая установка.

7 Крюк
8 Впускной клапан защитного газа
9 Теплоустойчивые уплотнительные диски*
10 Гайки
12 Диффузор из нержавеющей стали
13 Выпускной клапан защитного газа
11 Гибкие трубки
12 Камера выпуска защитного газа
15 Жесткие трубки

Пример использования гибкой системы ОРИОН-17 для защиты обратной стороны шва при сварке труб

Система поддува в сборе ОРИОН-17
1. Камера выпуска защитного газа – 1шт,
2. Выпускной клапан защитного газа – 1 шт,
3. Гайка – 2шт,
4. Гибкие рукава 150 мм – 2 шт,
5. Жесткие трубки 100 мм – 2 шт,
6. Диффузор из нержавеющей стали Ø27 мм – 1 шт,
7. Впускной клапан защитного газа – 1 шт,
8. Крюк – 1 шт,
9. Трос стальной – 10 м,
10. Газовый шланг – 10 м,
11. Комплект креплений с быстроразъемным соединением и гайкой к редуктору – 1шт.
12. Силиконовые теплоустойчивые диски по 2 шт:

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector