1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Технология контроля качества сварных швов

Стандартизация и контроль качества сварных соединений

24.5. Техника и технология контроля качества сварных швов

К неразрушающим физическим методам относятся: радиационный (радиографический) контроль просвечиванием швов; ультразвуковой контроль (УЗД); магнитный и электромагнитный контроль.

Радиационный (радиографический) контроль основан на использовании рентгеновских или гамма (у) -излучений. Эти ионизирующие электромагнитные излучения распространяются волнообразно, так же, как световые и радиоволны. Они отличаются чрезвычайно малой длиной волны, которая в миллионы раз меньше длины световых волн и вместе с тем обладает высокой энергией, значительно большей энергии видимого света. Эти излучения могут проникать через материалы с разной интенсивностью для различных материалов, зависящей от толщины металла и энергии излучения. Эти свойства используются в дефектоскопии для выявления дефектов в сварных швах. С одной стороны шва устанавливают источник излучения, а с другой — детектор, фиксирующий сведения о его сплошности или наличии дефектов. Детектором служит электронно-оптический преобразователь, рентгеновская пленка, фотобумага и т. п. При отсутствии дефектов излучение будет поглощаться сплошным металлом и выпуклый шов будет фиксироваться в виде более светлой, чем основной металл, полосы. Дефекты — иепровары, поры, шлаковые включения, подрезы, раскрытые трещины не будут поглощать излучения так интенсивно, как металл, поэтому на экране преобразователя, на пленке или фотобумаге они будут фиксироваться более темными пятнами и полосами на фоне светлого шва.

Для радиационной дефектоскопии используют рентгеновские аппараты и гамма-источники. В рентгеновских аппаратах основным рабочим элементом является рентгеновская трубка (24.5). Оиа состоит из стеклянного баллона, из которого почти полностью удален воздух, и впаянных в баллон катода и анода. Катод состоит из вольфрамовой спирали, при нагревании которой до высокой температуры источником тока он испускает электроны. Анод изготовлен в виде пластины из вольфрама и молибдена, расположенной под углом. Электроны катода с большой энергией ударяются о металл пластины и, отражаясь от нее, тормозятся, создавая так называемое тормозное рентгеновское излучение — R-лучи. В строительстве используется несколько типов рентгеновских аппаратов, выпускаемых промышленностью.

Более широко в условиях строительных площадок и в полевых условиях применяют дефектоскопию сварных швов при помощи у-излучений, источниками которых служат радиоактивные у-изотопы, заключенные в небольшие металлические ампулы. Изотопами называют разновидности одного и того же элемента, отличающиеся массой атома. Важной характеристикой Y-ИЗОТОПОВ, излучающих у-лучи вследствие распада вещества, является период полураспада, которым определяется активность изотопа. Используются большей частью аппараты Магистраль-1 и Гамма-рид-21 с цезием-137 (период полураспада 30 лет), которые обеспечивают длительную работу аппаратов без замены источника, у-аппараты бывают универсальные со шланговой подачей источника к просвечиваемому соединению (Гаммарид-21) и затворного типа (Магистраль-1), в которых действует затвор, открывающий источник направленно на шов. Откоытие затвора или шланговая подача производится дистанционно, чтобы избежать облучения дефектоско-писта (24.6). Для предохранения окружающих от у-излучений источники в дефектоскопах заключены в защитные оболочки из свинца или других сплавов.

Дефектоскопы затворного типа с направленным излучением применяют на сюрительно-монтажных площадках в случаях, когда универсальные невозможно использовать из-за ограниченного размера радиационно-защитных зон. Как рентгеновские, так и у-лучи опасны для человека, поэтому все работы с этими источниками должны вестись с соблюдением санитарных правил, не допускающих облучения работающих.

Ультразвуковая дефектоскопия (УЗД) основана на использовании ультразвуковых колебаний (УЗК), которые представляют собой колебания упругой среды со сверхвысокими частотами (более 20 кГц), не воспринимаемыми человеческим ухом. Ультразвуковые волны могут проникать в металл на большую глубину и отражаться от неметаллических включений и других дефектов. Для контроля применяют колебания с частотой 0,5—10 МГц. Введение этих колебаний осуществляют пьезоэлементами (пьезопреоб-разователями), которые состоят из пьезопластин толщиной, равной половине длины волны, излучаемой УЗК. Пьезоэлектрические материалы обладают способностью преобразовывать действие электрического поля в механические деформации и наоборот — действие механических деформаций в электрические заряды. Пластины изготовляют из пьезоэлектрической керамики или кварца и наклеивают на призмы из оргстекла, полистирола, капрона и других материа-алов, которые поглощают ультразвук и обеспечивают высокое затухание колебаний, что позволяет получать короткие зондирующие импульсы. Для приложения и съема электрического поля на противоположных поверхиостях пластииы нанесены серебряные электроды. Пьезопреобразователь обладает свойством излучать УЗК в металл через контактирующую смазку (глицерин, солидол и т. п.) синхронно с приложенным высокочастотным током и воспринимать отраженные от дефектных мест обратные УЗК, преобразуя их в электрические импульсы, фиксируемые электронно-лучевой трубкой. Чаще всего применяют наклонный преобразователь, работающий по совмещенной схеме и служащий одновременно излучателем и приемником УЗК. Применяется также раздельно-совмещенный преобразователь, в котором одна пьезопластина служит излучателем УЗК, а другая приемником. Примерная технология контроля приведена на 24.7. Контроль, как правило, проводят с одной стороны соединения (для толщины до 50 мм), но с обеих сторон шва, как показано на рисунке. В настоящее время УЗК применяют все более широко для проверки качества стыковых и угловых швов и даже стыков арматурной стали. Иногда для большей надежности сомнительные места просвечивают.

Магнитные методы дефектоскопии основаны на выявлении потока магнитного рассевания Фх (24,8га), возникающего в дефектных местах при намагничивании потоком Ф контролируемого сварного соединения. Намагничивание выполняют стационарным или перемещающимся магнитом. Для выявления дефекта магнитно-порошковым методом на поверхность намагниченного сварного соединения наносят ферромагнитный порошок (сухой или в смеси с керосином, масла или мыльным раствором), под действием 0i частицы порошка скапливаются в местах дефектов.

Более совершенным является магнитографический метод, при котором на сварной шов накладывают ферромагнитную ленту (24,8,6), после чего обкатывают шов движущимся электромагнитом, В результате на ленте фиксируются имеющиеся дефекты шва, которые обнаруживаются при пропускании ее через магнитографический дефектоскоп с электронно-лучевой трубкой.

Магнитные методы контроля возможны только для ферромагнитных сталей.

Капиллярная дефектоскопия применяется для обнаружения поверхностных дефектов (поверхностных трещин, включений и т. п.) и контроля непроницаемости сварных соединений, т. е. их способности не пропускать воду или другие жидкости в конструкциях резервуаров, баков, эксплуатируемых наливом жидкости Для выявления поверхностных дефектов хорошо очищенное сварное соединение покрывают контрастными индикаторными жидкостями — пенетрантами. В состав жидкости может входить люминесцирующее или цветное красящее вещество. Обладая капиллярной активностью, т. е. способностью втягиваться в мельчайшие сквозные или открытые с одной стороны отверстия, пенетрант проникает в поверхностные дефекты и остается в них после удаления пе-нетранта с поверхности соединения. Дефект легко обнаруживается ярким свечением люминесцирующе-го пенетранта при ультрафиолетовом облучении или по окраске дефекта красящим пенетрантом. Применяют и другие способы обнаружения и регистрации дефектов. Для контроля непроницаемости резервуаров, баков и других подобных конструкций широко применяют «керосиновую пробу», для чего наносят меловую обмазку с одной стороны сарочного соединения, а с другой смачивают его проникающей жидкостью, обычно керосином, обладающим высокой капиллярной активностью. После выдержки не менее 4 ч при положительной и 8 ч при отрицательной температуре окружающего воздуха обнаруживают сквозные дефекты по появлению бурых пятен на меловой смазке. Керосиновая проба высокочувствительна, ею выявляются дефекты диаметром 0,05 мм и более. В зимнее время для большей эффективности проникновения керосина предварительно прогревают швы для удаления из дефектов замерзшей влаги либо обдувают смазанные керосином швы теплым воздухом под давлением 0,3—0,4 МПа.

Пузырьковый метод дефектоскопии основан на выявлении несплошностей шва по появлению позырьков газа. Его применяют двумя способами — вакуумным и пневматическим.

Вакуумную дефектоскопию широко применяют для контроля непроницаемости сварных швов, доступных только с одной стороны, например плоских днищ вертикальных и траншейных резервуаров. Для контроля накладывают на шов переносную или передвижную вакуум-камеру, обрамленную губчатой резиной и хорошо присасывающуюся к поверхности соединения (24.9). Швы перед проверкой смазывают пенообразующей жидкостью. После включения вакуум-насоса и достижения разрежения в камере по вакуумметру 0,02—ОД МПа через верхнее стекло камеры наблюдают за появлением пузырьков воздуха и фиксируют дефекты. Затем камеру передвигают для контроля следующего участка.

Читать еще:  Монтажная пена для гидроизоляции швов

Пневматический метод пузырьковой дефектоскопии применяют для контроля герметичности, т.е. способности сосудов не пропускать находящиеся в них газы. Испытываемую конструкцию наполняют сжатым воздухом либо обдувают швы струей сжатого воздуха. С обратной стороны смазывают швы пенообразующей жидкостью, и по появлению пузырьков воздуха судят о наличии дефектов. Ввиду опасности пневматического испытания (возможности разрыва конструкции давлением Еоздуха) его производят по специально разработанному проекту, предусматривающему меры безопасности.

Испытание наливом или давлением воды обычно проводят как заключительный этап контроля качества резервуара или другой подобной конструкции. В процессе испытания обнаружвают дефекты швов по их отпотеванию с внешней стороны.

Химические методы контроля основаны на использовании химических реакций для обнаружения дефектов. В конструкцию, заполненную под давлением воздухом, добавляют аммиак или другие реагенты. Индикатор наносят на швы в виде пасты или бумажной ленты, пропитанной фенолфталеином. В местах сквозных дефектов на ленте или пасте образуются фиолетовые пятна. Могут быть использованы и другие смеси (5 %-ный раствор азотно-кислой ртути и др. ).

Механические испытания при неразрушающем контроле проводятся у контрольных соединений, свариваемых одновременно с изделием, если это требование предусмотрено проектом. При разрушающем контроле контрольные соединения вырезают непосредственно из конструкции, что также должно быть предусмотрено проектом.

Размер образцов и методы их испытания должны соответствовать требованиям ГОСТ 6996—66 н.

Металлографические исследования макрошлифов на торцах швов сварных соединений или контрольных образцов проводят в соответствии с 1 ОСТ 10243—75*, если такой вид испытания предусматрен проектом.

Контроль качества сварных швов при сварке пластмасс

Соблюдение принятой технологии — необходимое условие получения качественных сварных соединений, поэтому следует строго контролировать операции подготовки материала и технологию сварных работ.

Готовые сварные соединения контролируют наружным осмотром, проверяют на прочность, пористость и химическую стойкость. Во время наружного осмотра выявляют прежде всего внешние дефекты сварных швов: неровности по ширине и высоте и непровар сварных швов. При пленочных материалах место шва должно быть ровным, а материал не должен быть вытянутым или собранным в сборки.

Нарушение температурного режима сварки характеризуется значительным потемнением (от темно-коричневого до черного цвета) поверхности валика и основного материала.

Плотность сварных швов, т. е. отсутствие в них сквозных пор, проверяют жидкостью (водой или керосином) или воздухом, а более ответственные швы —электроискровым способом. При проверке сосудов жидкостями надо смазать наружные стороны сварных швов меловым раствором; места просачивания обнаружатся по пятнам, выступающим на поверхность мелового покрытия. Если используют сжатый воздух, то наружную поверхность шва смачивают мыльным раствором. Этот метод не рекомендуется при испытании конструкций из таких пластмасс (например, полиэтиленовых), которые подвержены образованию трещин под действием внутренних напряжений.

Применяется такжеметод проверки сжатым воздухом с погружением испытуемых сварных швов в воду. Неплотные места обнаруживают по воздушным пузырям. Однако, применяя этот метод, можно не заметить мелких пор.

В производстве упаковочной тары применяется способ длительного (5—10 ч) погружения сварных изделий в 2% водный раствор фуксина. Качество шва характеризуется проникновением жидкости внутрь сварного изделия.

Наиболее надежный и удобный метод проверки плотности швов — электроискровой, позволяющий обнаружить даже мельчайшие дефекты. Он основан на высоких электроизоляционных свойствах большинства полимеров (для сварных соединений из полиизобутилена этот метод неприменим), К индуктору, на выходе которого может быть получено напряжение 15—20 кВ, присоединены проводники, оканчивающиеся щупами-щетками из тонкой мягкой медной проволоки, которые укреплены па рукоятках из диэлектрического материала. На одной из щеток имеется индикаторная неоновая лампа. При испытании одну щетку ведут с одной стороны сварного соединения, другую — с противоположной стороны. В момент прохождения щеток над дефектным местом между ними проскакивает искра и зажигается неоновая лампа. В установках, не имеющих металлической опоры, при обследовании качества шва искровым методом, должно быть обеспечено заземление.

Ультразвуковые методы контроля качества сварных швов используют способность ультразвуковых колебаний проникать с большой скоростью (до 12000 м/с) в материал и отражаться от поверхности раздела сред с различными акустическими свойствами.

Известны три основных метода применения ультразвука для обнаружения внутренних дефектов: теневой, эхо-метод и резонансный.

Теневой метод основан на получении звуковой тени в местах нарушения сплошности материала и позволяет определять размеры, а иногда и конфигурацию дефектов. Его недостатком является невозможность определения глубины залегания дефектов.

Эхо-метод основан на отражении ультразвуковых колебаний от границы раздела двух сред с различными акустическими свойствами.

Резонансный метод основан на возбуждении в толще материала непрерывных ультразвуковых колебаний, частота которых периодически меняется. Эффект резонанса наступает всякий раз, когда толщина изделия равна целому числу полуволн ультразвука, т. е. в случае возникновения стоячих волн ультразвуковых колебаний, излучаемых и отраженных от дна изделия.

Кроме ультразвуковых методов контроля применяют также вибрационные (см. такжe Защита от вибрации).

Одним из наиболее эффективных методов выявления дефектов в сварных швах является рентгенография. Она дает возможность получить наглядную картину сварного соединения, причем снимок обеспечивает постоянную регистрацию результатов обследования. Недостатком его является сложность проведения обследования, поэтому его применяют в особо ответственных случаях.

Наиболее характерные дефекты сварных соединений и методы их устранения приведены в таблице 1.

Таблица 1. Дефекты сварных соединений, причины их возникновения и способы устранения .

Способы контроля качества сварных швов

Гидравлическое испытание при давлении, на 25-50% превышающем рабочее.

Пневматическое испытание наполнением контролируемой емкости сжатым воздухом.

Вакуумным способом
с применением вакуумной камеры из прозрачного оргстекла.

Испытание керосином, способным проникать через неплотности шва.

Испытание аммиаком. Испытуемые швы покрывают бумажной или марлевой лентой, пропитанной 5%-ным водным раствором азотнокислой ртути или фенолфталеином. В изделие нагнетают воздух в смеси с аммиаком до определенного давления. Проходя через неплотности шва, аммиак оставляет на бумаге черные (раствор азотнокислой ртути) или красные (фенолфталеин) пятна.

Испытание с помощью течеискателей. Применяют гелиевые или галоидные течеискатели.

При контроле гелиевым течеискателем внутри испытуемого сосуда создают глубокий вакуум, а снаружи сварные швы обдувают смесью воздуха с гелием. Через неплотности гелий проникает внутрь сосуда, а затем в течеискатель, оборудованный аппаратурой для его обнаружения.

Металлографические исследования. С помощью металлографического анализа проверяют качество структуры металла сварного соединения.

В зависимости от степени увеличения рассматривают макро- и микроструктуру с увеличением соответственно в 2-10 и 100-500 раз.

Просвечивание рентгеновскими и гамма-лучами. Рентгеновские лучи обладают значительной проникающей способностью и действуют на фотопленку подобно световым.

Выпускаются переносные рентгеновские установки РУП-60-20-1, РУП-120-5-1, РУП-150-10-1, РУП-200-5-1, РУП-400-5-1, РУП-1000-2-1 для просвечивания стальных изделий толщиной до 200 мм и алюминиевых — до 550 мм.

Просвечивание гамма-лучами. Для выявления внутренних дефектов применяют гамма-лучи, возникающие при самопроизвольном распаде некоторых элементов (радий, уран). Для контроля сварных швов используют искусственные радиоактивные вещества (изотопы), например кобальт-60, цезий-137 и др. Гамма-излучатели хранятся в специальных защитных контейнерах; работа с ними регламентируется инструкциями и правилами санитарной инспекции.

Изотопы действуют в течение более или менее длительного времени, например: кобальт — 60-5,24 года, цезий — 137-33 года, европий — 152-12,7 года, тулий — 170-129 дней и т. д.

Читать еще:  Что значит выполнить шов на проход?

Выпускаются передвижные установки с гамма-излучателями: ГУП-Со-0,5-1, ГУП-Со-5-1, ГУП-Сs-2-1 н др.

Ультразвуковой метод контроля. Этот метод контроля основан на способности ультразвуковых волн отражаться от границы раздела двух сред, обладающих разными акустическими свойствами.

Отразившись от нижней поверхности изделия, ультразвук возвратится, будет принят датчиком, преобразован в электрические колебания и подан на экран электронно-лучевой трубки.

При наличии дефектов ультразвуковые колебания исказятся: это будет видно на экране электронно-лучевой трубки, где появится всплеск искажение. По характеру и размерам искажений определяют виды и размеры дефектов.

Магнитографический способ контроля. Сущность способа основана на использовании магнитного рассеяния, возникающего над дефектом при намагничивании проверяемого изделия. При наличии в шве дефекта магнитный поток будет огибать его, создавая магнитный поток рассеяния.

Эти потоки преобразуются в электрические сигналы на экране осциллографа; по характеру сигнала определяют дефект.

Люминесцентный способ контроля. Основан на свойстве некоторых веществ (люминофоров) светиться при действии ультрафиолетовых лучей. Этот способ применяют для обнаружения поверхностных дефектов, например мельчайших трещин.

Перед контролем участок шва очищают от загрязнений и наносят на него жидкий раствор люминофора. После выдержки в течение 10-15 мин раствор смывают, изделие сушат и облучают ультрафиолетовыми лучами в затемненном помещении. По свечению оставшегося в шве раствора обнаруживают дефектные места.

Анализ методов контроля качества сварных соединений и швов

Опубликовано: 26.06.2015 Рубрика: Статьи Автор: Единый Стандарт

Спектральный анализ является одним из самых эффективных методов анализа состава материала и обнаружения дефектов в его структуре. Для обследования качества сварных соединений, швов и стыков используется диагностическая технология, называемая стилоскопирование. Этот метод позволяет четко определить наличие в металле и различных сплавов определенного состава легирующих элементов. Подобной диагностической процедуре подвергают в обязательном порядке все нагревающие металлические поверхности (котлы, трубопроводы и т.д.) и сварные соединения. Таким образом, можно контролировать качество и марку используемой сварочной структуры. Прибор для получения и изучения спектров называется стилоскоп. Мощность этого аппарата предопределяет его возможности. При обследовании объекта по этой методике происходят некоторые незначительные повреждения. Именно поэтому она легко применяется при исследовании отдельных деталей и сварных конструкций.

Стилоскопическая диагностика используется до начала термической обработки объекта при проведении начальной стадии сварочных работ с применением присадочных легированных структур. Она относится к обязательному способу визуального исследования разнообразных сварочных швов, стыков и соединений. Нормативные требования по использованию этого метода зависят от производственно-технологического цикла объекта обследования. Сфера применения стилоскопирования распространяется на следующие виды диагностических работ:

  • обеспечение контроля на присутствие в металлах и сплавах разнообразных металлических структур легирующих элементов;
  • контроль на соответствие свариваемых элементов;
  • исследование в энергетических устройствах металлических элементов;
  • обследование проволочных металлических структур из легкоплавких сплавов;
  • оценка качества химического состава крупногабаритных элементов в сварных швах и соединениях;
  • обследование объекта на предмет наличия в нем малых количеств легковозбудимых веществ, таких как сера (от 0,2%), кремния (от 0,1%) и углерода (от 0,1%);
  • обследование сварных швов и соединений, находящихся под давлением;
  • обеспечение контроля качественного состава стальных сплавов;
  • исследование сварных швов на предмет наличия в них коррозионных изменений;
  • контроль над присутствием в сплавах молибдена и хрома.

Стилоскопическая диагностика применяется в следующих случаях:

  • на сварных поверхностях с интервалом 2 метра;
  • после устранения повреждений на сварных соединениях;
  • на местах изменения сварного шва и соединения;
  • после повторной сварки;
  • в случае наплавок металлов;
  • в случаях, предусмотренных нормативными документами, в том числе в соответствии с ГОСТ 1435-99.

Структурные подразделения, где проводится стилоскопирование, могут быть следующими:

  • предприятия машиностроения при диагностической процедуре обследования материалов;
  • участки для складского хранения шихтовых материалов;
  • сортировочные пункты металлолома;
  • лабораторные помещения литейных производств;
  • предприятия приборостроения химической и нефтяной промышленности;
  • предприятия газовой промышленности;
  • различные производственные, строительные и инфраструктурные производства в полевых условиях.

Существует еще один метод, эффективность которого доказана многочисленными испытаниями в области оценки качества сварных соединений, стыков и швов. Он называется цветная или капиллярная дефектоскопия и относится к диагностическим технологиям неразрушающего контроля. Его, как правило, используют для обнаружения поверхностных повреждений и сквозных дефектов в местах сварки. Этот метод позволяет не только их зафиксировать, но и определить их место расположения, размеры и направление на исследуемом объекте.

Посредством этого диагностического способа жидкий индикатор сквозь намоченную капиллярную структуру проникает внутрь обследуемого объекта. Далее идут визуальная оценка и фиксация результатов анализа.

Этапы капиллярной диагностики следующие:

  1. Механическое очищение поверхности обследуемого объекта с применением очистителя с последующей сушкой.
  2. Использование первого индикаторного вещества посредством погружения в него объекта исследования. Также возможно распыление или нанесение вещества на объект кистью.
  3. Освобождение поверхности от оставшегося вещества.
  4. Использование второго индикаторного вещества или проявителя.
  5. Анализ и контроль полученных результатов.

В результате химической диффузии, которая происходит в результате смешивания жидкостей, все трещины и повреждения на обследуемом объекте проявляются, что позволяет диагносту определить их характер. Чем этот процесс интенсивней, тем серьезней глубина повреждения и его толщина. Именно контрастность диффузионных проявлений является ключевым в этом процессе обследования сварных соединений.

Капиллярная диагностика имеет ряд принципиальных преимуществ. Они заключаются в следующем:

  • точность и определенность мелких повреждений на обследуемом объекте;
  • значительный рост спектрального обзора всех дефектов на поверхности объектов;
  • небольшая стоимость метода.

Но у цветной диагностики есть и свои недостатки, которые ограничивают сферу ее применения. Это:

  • отсутствие точности диагностирования при холодных температурных режимах;
  • относительно долгий процесс диагностики;
  • сложность проведения процедуры;
  • высокая зависимость результатов от человеческого фактора и субъективного подхода оператора;
  • отсутствие в методе механизированных, а также автоматизированных процессов;
  • сложность при хранении индикаторных жидкостей и низкий срок их эксплуатации.

Квалификация специалиста, осуществляющего капиллярную диагностику, является существенным фактором для ее качественного провидения. От него зависит насколько точно будут подобраны необходимые индикаторные жидкости. Этот метод применяется достаточно широко для оценки качества исполнения сварных швов шириной 0,1 см и глубиной 0,3 см. Его применяют надзорные организации, а также практически во всех отраслях промышленности, где существуют сварные металлические конструкции.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Виды контроля сварки. Методы контроля качества сварных соединений

Содержание

  1. Виды контроля сварных соединений
    • Предварительный контроль
    • Текущий контроль сварки
    • Окончательный контроль сварки
  2. Какими методами контролируют сварные соединения?
  3. Методы разрушающего контроля сварных соединений
    • Металлографические исследования сварных соединений
    • Химический анализ сварного соединения
    • Механические испытания сварного соединения
  4. Методы неразрушающего контроля сварных соединений

Для того чтобы сварное соединение соответствовало заданным требованиям по качеству, необходимо контролировать его, начиная с контроля подготовки шва, продолжая контролировать во время сварки и заканчивая проверкой уже готового сварного соединения. Исходя из этого, различают следующие виды контроля сварки: предварительный, текущий и окончательный.

Виды контроля сварных соединений

Предварительный контроль

Предварительный контроль включает в себя проверку качества свариваемого металла и материалов для сварки. Кроме этого, контролируют подготовку сварных кромок и сборку свариваемых деталей, исправность оснастки для сварки, сварочного оборудования и приборов. Кроме этого, необходимо провести испытания стали на свариваемость, которые включают в себя механические испытания, металлографический анализ и испытания на вероятность образования холодных трещин и горячих трещин при сварке.

Текущий контроль сварки

Текущий контроль ведут непосредственно во время сварочных работ. При этом проверяют соблюдение технологии сварки (соблюдение режимов сварки, качество зачистки промежуточных сварных швов, заварку сварочных кратеров, выполнение предварительного и сопутствующего подогрева, при необходимости и другие моменты).

Читать еще:  Как варить вертикальный шов инвертором?

Окончательный контроль сварки

При окончательном контроле проверяют уже готовые сварные соединения. Готовое сварное изделие должно полностью удовлетворять требованиям, предъявляемым к нему.

Суммарная трудоёмкость всех контрольных операций может достигать до 30% от общей трудоёмкости изготовления сварной металлоконструкции. Объём контроля зависит от того, насколько высоки требования, предъявляемые к металлоконструкции, от сложности технологии сварки и от квалификации контролирующего персонала.

Какими методами контролируют сварные соединения?

Контроль сварных соединений производится с помощью следующих методов контроля: внешним осмотром, металлографическим анализом, химическим анализом, с помощью механических испытаний, просвечиванием рентгеновскими, или гамма-лучами, ультразвуковую дефектоскопию, магнитную дефектоскопию. Для достоверного контроля, сварное соединение необходимо очистить от шлака, окалины и сварочных брызг.

По своей сути, способы контроля сварки можно разделить на две группы: методы разрушающего контроля и методы неразрушающего контроля сварных соединений. О каждой из этих групп будет сказано чуть ниже по тексту.

Методы разрушающего контроля сварных соединений

Методы разрушающего контроля сварки — это различные испытания сварных образцов, позволяющие определить параметры сварного шва и зоны термического влияния. К таким методам относятся механические и металлографические испытания, а также химический анализ. Чаще всего такие испытания выполняют на контрольных образцах и реже — на самом изделии. Контрольные образцы должны из того же материала, что и само изделие, и свариваются они по той же технологии.

Металлографические исследования сварных соединений

Металлографический анализ заключается в засверливании и протравливании поверхности металла 10%-ным водным раствором хлорида меди и аммония. При этом засверленная поверхность должна проходить и через металл сварного шва, и через основной металл. Время протравливания составляет 2-3мин. По окончании протравливания остатки хлорида меди смывают водой.

После этого протравленную поверхность осматривают невооружённым взглядом (макроструктурное исследование), или, используя оптические приборы (макроструктурное исследование). При осмотре определяют качество провара и наличие внутренних сварных дефектов. При сварке ответственных металлоконструкций, металлографические исследования проводятся в расширенном объёме. Для их проведения применяются специальные микро- и макрошлифы, изготовленные из сваренных вместе контрольных пластин, или пластин, вырезанных непосредственно из сварного соединения.

Макроструктурное металлографическое исследование проводят невооружённым глазом, или с помощью лупы или увеличительного стекла. При таком методе контроля можно определить характер расположение видимых сварных дефектов.

При микроструктурном анализе исследуют структуру сварного шва и переходной зоны с помощью оптических приборов, дающих увеличение в 50-2000раз. Микроструктурное исследование позволяет определить наличие шлаковых включений в металле шва, обнаружить прожоги и несплавления, увидеть мельчайшие трещины и поры в металле и оценить величину зёрен металла.

Химический анализ сварного соединения

При проведении химического анализа устанавливают химический состав сварного шва, основного металла и электродов и определяют их соответствие установленным стандартам на изготовление сварного изделия. Химический анализ должен проводится в соответствии с требованиями ГОСТ 122-75, в котором оговорены методы отбора проб для химического и спектрального анализа.

Механические испытания сварного соединения

Для проведения механических испытаний чаще всего изготавливают специальные контрольные образцы из того же металла по той же технологии, что и сварное соединение. В некоторых случаях проводят испытания на образцах, вырезанных из сварного соединения.

При проведении механических испытаний определяют таких механические свойства соединения, как предел прочности на растяжение, ударную вязкость, твёрдость и максимальный угол загиба и пластичность металла. Форма и размеры образцов, взятых для испытаний, должны соответствовать ГОСТ 6996. Согласно этому стандарту, испытывают металл сварного шва, зону термического влияния и основной металл.

Методы неразрушающего контроля сварных соединений

К методам неразрушающего контроля сварки относят способы, позволяющие проверить качество металла шва и переходной зоны без их разрушения. К этим методам относятся внешний осмотр сварного соединения, а также исследования при помощи электромагнитных, акустических воздействий и при помощи различных веществ, проникающих в сварной металл.

С помощью подобных методов можно определить наличие различных дефектов в сварном соединении, их характер, величину и расположение. Эти возможности и определили общее название этих методов — дефектоскопия. О том, какие бывают виды дефектоскопии, и о неразрушающем контроле сварки подробно рассказано на странице: «Неразрушающий контроль сварных соединений, методы контроля».

МЕТОДЫ КОНТРОЛЯ КАЧЕСТВА СВАРНЫХ СОЕДИНЕНИЙ

Что это такое?

Методы контроля качества сварных соединений — это совокупность способов оценки состояния сварных стыков газопроводов на пригодность к эксплуатации.

Для чего это нужно?

Контроль качества сварных соединений — это важная и обязательная часть сварочных работ и работ по оценке состояния газопроводов . Проверка состоятельности сварного шва входит в систему объективного контроля качества газовых магистралей и является эффективным способом оценки их надежности и безопасности.

СПРАВКА:

В Обществе при проведении текущего и капитального ремонта магистральных газопроводов в качестве основных методов неразрушающего контроля используются визуально-измерительный, радиографический и ультразвуковой.

В частности, после сварки стыков невооруженным глазом можно рассмотреть лишь часть дефектов, например, наружные трещины и поры, непровары, подрезы. Большая часть несовершенств может быть скрыта в глубине металла или иметь такие малые размеры, что обнаружить их можно только с использованием специальных приборов и материалов. Существуют разные методы контроля сварных швов, различающихся по принципу действия, способности к обнаружению тех или иных видов дефектов, техническому оснащению. Методы контроля сварных соединений подразделяются на разрушающие и неразрушающие. Последние являются наиболее широко используемыми в газовой отрасли.

Схема путей линий магнитного потока при прохождении через сварной шов

Какие бывают методы?

Неразрушающий контроль представляет собой целый спектр методов, позволяющих определять недопустимые дефекты без нарушения целостности сварного соединения газопровода . На практике используют более десятка видов неразрушающего контроля : визуально-измерительный, радиационный, ультразвуковой, магнитный, акустико-эмиссионный, метод воздействия проникающими веществами (капиллярный и течеискание), вибродиагностический, тепловой, электрический, оптический, вихретоковый, метод напряженно-деформированного состояния. Применение определенного метода зависит от объекта контроля и категории ответственности участка.

Как это происходит?

Широкое распространение в газовой промышленности получили физико-технические методы неразрушающего контроля . Существует несколько эффективных способов проверки качества сварного соединения с применением специального оборудования.

Ультразвуковой метод основывается на избирательном отражении ультразвукового излучения от структур с разными акустическими характеристиками. Направленная аппаратом ультразвуковая волна, пересекая материал, отражается от его обратной поверхности и возвращается, где обнаруживается специальным датчиком. Если в толще металла присутствует дефект, то датчик уловит любое волновое искажение.

Сущность радиационного вида контроля заключается в поглощении и рассеивании рентгеновских лучей и гамма-излучения в местах наличия дефектов. Излучение подается с одной стороны при помощи специального источника, а на противоположной стороне устанавливается чувствительная пластина (пленка). Лучи, проходя через металл, облучают пленку, оставляя в местах дефектов более темные пятна из-за меньшего поглощения.

Магнитная дефектоскопия осуществляется с помощью дефектоскопов, формирующих электромагнитное поле внутри сваренных металлов. Контроль проводится двумя способами. При магнитопорошковом — наносится ферромагнитный порошок , который иллюстрирует магнитное поле со сгущением в местах дефектов. Более современный магнитографический метод подразумевает наложение ферромагнитной пленки, на которой проявляется полная картина магнитных линий.

Как у нас?

Специалисты ООО «Газпром трансгаз Ставрополь» используют многие методы разрушающего и неразрушающего контроля. Часть методов применяется при выполнении сварочно-монтажных работ на магистральных газопроводах при текущем и капитальном ремонте, часть — при диагностическом обследовании действующих объектов газовых магистралей.

Проведение ультразвукового контроля сварного соединения

Выполнение таких работ обеспечивают Лаборатория контроля качества сварки и диагностики на базе Невинномысского ЛПУМГ, а также служба диагностики технологического оборудования Инженерно-технического центра. Кроме того, в каждом филиале Общества трудятся аттестованные специалисты, ответственные за строительный контроль.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector