5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Строение сварочного шва

Строение сварного шва

Сварка металлов плавлением представляет собой более сложный металлургический процесс по сравнению с металлургическим процессом, происходящим при получении металлических отливок.

Характерными особенностями сварки сталей являются следующие:

1. Высокая температура нагрева металла. При дуговой сварке температура сварочной ванны достигает

2500 0 С, вместо 1700 0 С в печи;

2. Малый объем расплавленного металла в сварочной ванне. При ручной дуговой сварке он редко достигает 2 см 3 .

3. Кратковременность процесса. Время от начала расплавления до застывания сварочной ванны составляет несколько секунд ( ).

Высокая температура в зоне дуги приводит к быстрому плавлению электродного материала, флюса и основного металла. Молекулы азота, кислорода, водорода частично распадаются на атомы и очень активно взаимодействуют с расплавленным металлом, в результате чего свойства шва понижаются. Высокая температура приводит также к выгоранию, испарению и разбрызгиванию металла и других веществ.

Малый объем расплавленного металла в сварочной ванне и относительно холодный основной металл вызывают интенсивный отвод тепла, в результате чего химические реакции между расплавленным металлом и шлаком полностью завершаются, не создается равновесие.

Быстрое затвердевание и кристаллизация металла шва отражаются на структуре и механических свойствах шва.

Рассмотрим структуру сварного шва малоуглеродистой стали после кристаллизации (рис. 5.6).

Рис. 5.7. Схема строения шва.

А – зона наплавленного металла, Б – зона сплавления,

В – зона термического влияния, Г – зона основного металла.

Структура сварного шва состоит из четырех зон (рис. 5.7):

Зона наплавленного металла (зона А) представляет собой перемешанный в жидком состоянии с основным металлом материал электрода или присадочной проволоки. Соотношение между основным и электродным металлом в шве зависит от скорости плавления электрода, глубины ванны, объема наплавленного металла и ряда других факторов.

Зона сплавления (зона Б) – это слой основного металла толщиной 0,1-0,4мм, с частично оплавленными зёрнами. Перегрев металла в этой зоне приводит к образованию игольчатой структуры, отличающейся хрупкостью и пониженной прочностью и оказывает значительное влияние на свойства соединения в целом.

Зона термического влияния (зона В) состоит из четырех участков, различающихся структурой:

1 – Участок перегрева – область основного металла, нагретого до 1100-1450 0 С и имеющего крупнозернистую структуру. Перегрев снижает механические свойства металла (пластичность и вязкость). Разрушение сварочного соединения обычно происходит по этому участку, ширина которого достигает 3-4 мм.

2 – Участок нормализации – область основного металла нагретого до 900-1000 0 С. Благодаря мелкозернистой структуре механические свойства металла на этом участке выше по сравнению с основным металлом. Ширина участка составляет 1-4 мм.

3– Участок неполной перекристаллизации – область основного металла, нагретого до 725-900 0 С., состоит из мелких и крупных зёрен. Неравномерное строение приводит к снижению механических свойств.

4- Участок рекристализации – область основного металла нагретого до 450-725 0 С. При этих температурах происходит восстановление формы зёрен, деформированных в результате предыдущего механического воздействия. Ширина зоны составляет 5-7 мм.

Величина зоны термического влияния зависит от способа и технологии сварки и свойств свариваемого металла, так, при ручной дуговой сварке от 2 до 10 мм, при газовой 20-25 мм.

Зона основного металла (зона Г) условно начинается от границы с температурой 450 0 С. Структура при температурах ниже 450 0 С не отличается от структуры основного металла, однако сталь, нагретая до Т= 200-400 0 С, обладает худшими механическими свойствами, что объясняется выпадением по границам зёрен оксидов и нитридов, ослабляющих связь между зёрнами. Это явление, вызывающее понижение пластичности и ударной вязкости при одновременном повышении прочности металла, называется синеломкостью.

Места разрушения сварных соединений.

Прочность металла шва, зоны термического влияния и основного металла различны. Поэтому сварное соединение следует рассматривать как неоднородное тело.

Разрушения могут происходить по всем трем зонам в зависимости от того, какая зона имеет меньшую прочность.

В настоящее время равнопрочность сварных соединений и основного металла обеспечивается электродами с качественными покрытиями и другими сварочными материалами.

Прочность сварных соединений зависит от прочности металла шва, ширины перегретого металла в зоне термического участка, совместной ширины металла шва и ширины перегретого металла, характера приложение внешней нагрузки, температуры эксплуатации изделия и других факторов.

Сварка плавлением

При сварке плавлением производится расплавление кромок свариваемых заготовок и присадочного материала для заполнения зазора между ними. Подвижность атомов материала в жидком состоянии приводит к объединению частей деталей в результате образования общей сварочной ванны. В результате кристаллизации металла сварочной ванны совместно с оплавленными кромками изделия и возникновения сварного шва образуется прочное соединение без приложения давления.

Дата добавления: 2017-01-26 ; просмотров: 5532 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Строение сварного соединения. Влияние неоднородности свойств на прочность сварной конструкции

Сварным соединением как конструктивным элементом называют участок конструкции, в котором элементы отдельные ее элементы соединены с помощью сварки. В сварное соединения входят сварной шов, прилегающая к нему зона основного металла со структурными другими изменениями в результате термического действия сварки (зона термического влияния) и примыкающие к ней участки основного металла.

В той или иной мере для всех сварных соединений характерно различие механических свойств металла в разных участках, соизмеримых с размерами соединения, главным образом с толщиной свариваемых элементов s, называемое механической неоднородностью.

Сварные соединения являются несущими элементами конструкций, в которых неоднородность свойств может быть весьма значительной. При установившемся режиме сварки ширина зон и их механические свойства мало меняются по длине сварного соединения. Обычно рассматривают неоднородность свойств и чередование зон в поперечном сечении сварного соединения.

Сварные соединения, выполненные сваркой плавлением, можно разделить на несколько зон, отличающихся макро- и микроструктурой, химическим составом, механическими свойствами и другими признаками: сварной шов, зону оглавления, зону термического влияния и основной металл (Рис. 4 .27). Характерные признаки зон связаны с фазовыми и структурными превращениями, которые претерпевают при сварке металл в каждой зоне.

Рис. 4.27 Характерные зоны сварных соединений

1 — шов; 2 — зона термического влияния;3 — основной металл; 4 — околошовный участок зоны термического влияния.; 5 — зона сплавления; ТЛ, ТС, и ТП — температуры ликвидуса, солидуса и начала фазовых и структурных превращений

Читать еще:  Усиление сварных швов наплавкой

Сварной шовхарактеризуется литой макроструктурой металла.

Зона термического влияния (ЗТВ)— участок основного металла, примыкающий к сварному шву, в пределах которого вследствие теплового воздействия сварочного источника нагрева протекают фазовые и структурные превращения в твердом металле. В результате этогоЗТВимеет отличные от основного металла величину зерна и вторичную микроструктуру. Часто выделяют околошовный участокЗТВили околошовную зону (ОШЗ). Она располагается непосредственно у сварного шва и включает несколько рядов крупных зерен. Металл шва, имеющий литую макроструктуру, и ЗТВ в основном металле, имеющая макроструктуру проката или рекристаллизованную макроструктуру литой или кованой заготовки, разделяются друг от друга поверхностью сплавления.

Зона сплавления (ЗС)— это зона сварного соединения, где происходит сплавление наплавленного и основного металла. В нее входит узкий участок шва, расположенный у линии сплавления, а также оплавленный участокОШЗ.

Основной металл располагается, за пределами ЗТВи не претерпевает изменений при сварке.

Сварное стыковое соединение, как было сказано выше, в поперечном сечении имеет несколько участков, которые могут существенно различаться между собой по механическим свойствам. Обычно рассматривают неоднородность свойств и чередование зон в поперечном сечении сварного соединения.

Зоны, где металл обладает пониженным пределом текучести по отношению к пределу текучести соседнего металла, называют мягкими прослойками.

Типичным примером образования механической неоднородности и прослоек является сварка термически обработанных сталей. Будем для простоты рассматривать сварку без присадочного металла. Тогда шов и околошовная зона, нагретые до температуры выше АС3, в процессе охлаждения закаливаются и имеют более высокую твердость и прочность, чем основной металл. Этот участок называют твердой прослойкой.

Рядом с ней по обе стороны находятся участки высокоотпущенного металла, который и по отношению к основному металлу, и по отношению к твердой прослойке имеет пониженный предел текучести. Эти зоны образуют две мягкие прослойки. В случае если термически обработанная сталь сваривается аустенитным швом, возникает еще более сложное сочетание мягкого аустенитного шва, двух твердых и двух мягких прослоек. Если отношение пределов текучести прослойки и соседнего участка больше единицы, то прослойка будет твердой; в обратном случае — мягкой.

Неоднородность имеет место и при с сварке наклепанных термически неупрочняемых сталей и сплавов, например аустенитных сталей или алюминиевых сплавов. Нагрев до высоких температур снимает наклеп, достигнутый при холодной прокатке металла. На Рис. 4 .27 показано распределение твердости в сварном соединении из сплава АМг6. Твердость шва и околошовной зоны близки к твердости отожженного металла. Предел прочности и предел текучести оказываются заметно ниже, чем у основного металла, а пластичность повышается. Представление о размерах зоны и степени разупрочнения дает также Рис. 4 .28

Паяные стыковые соединения, припой в которых менее прочен, чем основной металл, также содержат мягкую прослойку. Прочность таких соединений зависит не только от прочности металла мягкой зоны, но и от ее относительного размера х = h/s, гдеh— ширина прослойки;s— толщина металла.

Рис. 4.28 Распределение твердости по Виккерсу сварного шва из сплава АМг6(s =2,8 мм)

Табл. 1.4.7 Изменение свойств наклепанного металла в сварных стыковых соединениях

Материал, вид сварки

Половина ширины зоны разупрочнения в сварном соединении, мм

Основной металл в наклепанном состоянии

Сварное соединение в зоне разупрочнения

,МПа

,град

,МПа

,град

Сплав АМг6 (s =2,8 мм), автоматическая аргонодуговая сварка

Сталь 12Х18Н9Т (s = 3мм), автоматическая сварка под флюсом

Машиностроение и механика

Проектирование сварных конструкций: прочность, материалы, строение сварного соединения — Строение сварного соединения

Article Index
Проектирование сварных конструкций: прочность, материалы, строение сварного соединения
Расчетная и конструкционная прочность
Жесткость и устойчивость деталей
Расчет строительных конструкций по методу Предельных состояний
Метод расчета по предельным состояниям
Обозначение на чертежах швов сварных соединений
Материалы сварных конструкций
Измерение твердости
Испытания на ударный изгиб
Правила нанесения показателей свойств материалов
Стали. Классификация. Маркировка
Углеродистые стали
Низколегированные стали
Цветные металлы
Сварочные материалы
Строение сварного соединения
Растяжение поперек шва
Растяжение вдоль шва
Механические свойства металла сварных соединений
All Pages

Сварным соединением как конструктивным элементом называют участок конструкции, в котором элементы отдельные ее элементы соединены с помощью сварки. В сварное соединения входят сварной шов, прилегающая к нему зона основного металла со структурными другими изменениями в результате термического действия сварки (зона термического влияния) и примыкающие к ней участки основного металла.

В той или иной мере для всех сварных соединений характерно различие механических свойств металла в разных участках, соизмеримых с размерами соединения, главным образом с толщиной свариваемых элементов s, называемое механической неоднородностью.

Сварные соединения являются несущими элементами конструкций, в которых неоднородность свойств может быть весьма значительной. При установившемся режиме сварки ширина зон и их механические свойства мало меняются по длине сварного соединения. Обычно рассматривают неоднородность свойств и чередование зон в поперечном сечении сварного соединения.

Сварные соединения, выполненные сваркой плавлением, можно разделить на несколько зон, отличающихся макро- и микроструктурой, химическим составом, механическими свойствами и другими признаками: сварной шов, зону оглавления, зону термического влияния и основной металл (Рис. 4.1). Характерные признаки зон связаны с фазовыми и структурными превращениями, которые претерпевают при сварке металл в каждой зоне.

Рис. 4.1 Характерные зоны сварных соединений

1 — шов; 2 — зона термического влияния;3 — основной металл; 4 — околошовный участок зоны термического влияния.; 5 — зона сплавления; ТЛ, ТС, и ТП — температуры ликвидуса, солидуса и начала фазовых и структурных превращений

Сварной шов характеризуется литой макроструктурой металла.

Зона термического влияния (ЗТВ) — участок основного металла, примыкающий к сварному шву, в пределах которого вследствие теплового воздействия сварочного источника нагрева протекают фазовые и структурные превращения в твердом металле. В результате этого ЗТВ имеет отличные от основного металла величину зерна и вторичную микроструктуру. Часто выделяют околошовный участок ЗТВ или околошовную зону (ОШЗ). Она располагается непосредственно у сварного шва и включает несколько рядов крупных зерен. Металл шва, имеющий литую макроструктуру, и ЗТВ в основном металле, имеющая макроструктуру проката или рекристаллизованную макроструктуру литой или кованой заготовки, разделяются друг от друга поверхностью сплавления.

Читать еще:  Клеймение сварных швов ГОСТ

Зона сплавления (ЗС) — это зона сварного соединения, где происходит сплавление наплавленного и основного металла. В нее входит узкий участок шва, расположенный у линии сплавления, а также оплавленный участок ОШЗ.

Основной металл располагается, за пределами ЗТВ и не претерпевает изменений при сварке.

Сварное стыковое соединение, как было сказано выше, в поперечном сечении имеет несколько участков, которые могут существенно различаться между собой по механическим свойствам. Обычно рассматривают неоднородность свойств и чередование зон в поперечном сечении сварного соединения.

Зоны, где металл обладает пониженным пределом текучести по отношению к пределу текучести соседнего металла, называют мягкими прослойками.

Типичным примером образования механической неоднородности и прослоек является сварка термически обработанных сталей. Будем для простоты рассматривать сварку без присадочного металла. Тогда шов и околошовная зона, нагретые до температуры выше АС3, в процессе охлаждения закаливаются и имеют более высокую твердость и прочность, чем основной металл. Этот участок называют твердой прослойкой.

Рядом с ней по обе стороны находятся участки высокоотпущенного металла, который и по отношению к основному металлу, и по отношению к твердой прослойке имеет пониженный предел текучести. Эти зоны образуют две мягкие прослойки. В случае если термически обработанная сталь сваривается аустенитным швом, возникает еще более сложное сочетание мягкого аустенитного шва, двух твердых и двух мягких прослоек. Если отношение пределов текучести прослойки и соседнего участка больше единицы, то прослойка будет твердой; в обратном случае — мягкой.

Неоднородность имеет место и при с сварке наклепанных термически неупрочняемых сталей и сплавов, например аустенитных сталей или алюминиевых сплавов. Нагрев до высоких температур снимает наклеп, достигнутый при холодной прокатке металла. На Рис. 4.1 показано распределение твердости в сварном соединении из сплава АМг6. Твердость шва и околошовной зоны близки к твердости отожженного металла. Предел прочности и предел текучести оказываются заметно ниже, чем у основного металла, а пластичность повышается. Представление о размерах зоны и степени разупрочнения дает также Рис. 4.2

Паяные стыковые соединения, припой в которых менее прочен, чем основной металл, также содержат мягкую прослойку. Прочность таких соединений зависит не только от прочности металла мягкой зоны, но и от ее относительного размера х = h/s, где h — ширина прослойки; s— толщина металла.

Рис. 4.2 Распределение твердости по Виккерсу сварного шва из сплава АМг6 (s =2,8 мм)

Механические свойства образца, вырезанного из мягкой прослойки и имеющего низкую прочность, еще не свидетельствуют о том, что сварное соединение в целом обладает такими же свойствами. Взаимодействие отдельных зон протекает сложным образом, и агрегатная прочность сварного соединения, как правило, не совпадает с прочностью какой-либо прослойки.

Строение металла сварного шва и околошовной зоны при электродуговой сварке

Сварка – это технологический процесс получения неразъемных соединений по средствам установления межатомных связей между свариваемыми частями при местном или общем нагреве, пластическом деформировании или совместном действии того и другого.

Для образования сварного соединения необходимо выполнение следующих условий:

1.Удаление со свариваемых поверхностей загрязнений, оксидов, абсорбированных на поверхностях, и инородных атомов (зачистка поверхностей деталей).

2.Энергетическая активация поверхностных атомов, облегчающая их взаимодействие друг с другом (нагрев).

3.Движение свариваемых поверхностей на расстояния сопоставимые с межатомным расстоянием в свариваемых заготовках.

Указанные условия реализуются различными способами сварки путем энергетического воздействия на металл в зоне сварки. Энергия вводится в виде теплоты, упруго-пластической деформации электронного, электро-магнитного и других видов воздействия.

В результате металлургических и термических циклов сварки образуется прочное сварное соединение со следующим распределением структурного сварного шва:

1.Сварной шов – зона, имеющая характерное столбчатое строение, указывающее на направленность кристаллизации при переходе в твердое состояние. В металле шва наблюдаются неметаллические включения, газовые раковины и усадочные явления, характерные для отливок.

2.Зона неполного расплавления характеризуется небольшим размером, отличается крупнозернистой структурой.

3.Зона перегрева при сварке была нагрета ниже температуры фазового перехода, строение характеризуется крупным размером зерна и игольчатой структурой. По мере удаления от металла шва величина зерен уменьшается. Зона перегрева вызывает охрупчивание сварного соединения, особенно при повышенном содержании углерода. Уменьшить зону перегрева, достигающую 3-4 мм, можно или повышением скорости сварки, или увеличением числа проходов.

4.Зона нормализации – участок мелких зерен, образовавшихся в результате полной перекристаллизации основного металла. Механические свойства металла этой зоны превышают свойства основного металла. Ширина зоны достигает нескольких мм, в зависимости от размера шва.

5.Зона неполной перекристаллизации характеризуется сочетанием новых измельченных зерен со старыми исходными зернами основного металла. Ширина зоны составляет от 0,1-0,5 мм.

6.Зона рекристаллизации (1-1,5 мм) выделяется только при сварке предварительно наклепанного металла.

7.Зона синеломкости расположена непосредственно за зоной рекристаллизации, определяется по наличию синих цветов побежалости. По микроструктуре не имеет заметных отличий от исходного металла.

Физико-химические процессы, вызывающие образование структурной неоднородности сварного шва, обуславливают свойства металла шва, зоны термического влияния и всего соединения в целом.

Основной задачей, стоящей перед конструкторами и технологами, создающими сварную конструкцию, является получение соединения равнопрочного основному металлу в различных условиях эксплуатации.

Долговечность и надежность сварных конструкций определяется двумя группами факторов: конструктивными и технологическими.

Рациональное конструирование сварных соединений должно обеспечить наибольшую равномерность распределения по сечению детали в напряжении от внешних нагрузок, максимальное устранение концентраторов напряжений и уменьшение вредного влияния остаточных напряжений.

Поможем написать любую работу на аналогичную тему

Строение металла сварного шва и околошовной зоны при электродуговой сварке

Строение металла сварного шва и околошовной зоны при электродуговой сварке

Строение металла сварного шва и околошовной зоны при электродуговой сварке

23. Строение сварного соединения

В процессе сварки в зоне расплавленного металла происходит в миниатюре металлургический процесс: расплавленный металл электрода и изделия перемешивается, затем в него добавляется шихта, содержащая легирующие добавки из обмазки электрода. Далее при остывании идет кристаллизация расплавленного металла. На границе шва металл изделия претерпевает химические и структурные изменения, которые могут ухудшить его первоначальные свойства. Однако современные способы сварки позволяют, благодаря рациональному выбору типа электрода и его обмазки, а также режиму сварки, получать прочность сварного соединения не меньшую, чем прочность основного металла.

Читать еще:  Техника выполнения швов в нижнем положении

На рисунке показано строение сварного шва. Наплавленный металл 2 получается в результате перевода присадочного и частично основного металлов в жидкое состояние, образования жидкой сварочной ванночки и последующего затвердевания, в процессе которого расплавленный металл соединяется с основным 1. В узкой зоне сплавления 3 кристаллизуются зерна, принадлежащие основному и наплавленному металлу. В сварном шве образуется зона термического влияния 4, которая располагается в толще основного металла. В этой зоне под влиянием быстрого нагрева и охлаждения в процессе сварки изменяется лишь структура металла, а его химический состав остается неизменным.

Структура сварного шва:

а – строение сварного шва; б – структурные превращения

малоуглеродистой стали в зоне термического влияния.

Зоны: I – неполного расплавления; II – перегрева; III – нормализации; IY – неполной перекристаллизации; Y – рекристаллизации; YI – синеломкости

Строение сварного шва сразу после затвердевания и распределения температуры в малоуглеродистой стали показано на рис. 1.1 б.

Зона Iпримыкает непосредственно к металлу шва. Основной металл на этом участке в процессе сварки частично расплавляется и представляет собой смесь твердой и жидкой фаз. Наплавленный металл имеет столбчатое крупнозернистое строение, характерное для литой стали.

Если наплавленный металл или соседний с ним участок был сильно перегрет, то при охлаждении на этом участке (зона II)зерна основного металла образуют грубоигольчатую структуру. Металл этой зоны обладает повышенной хрупкостью и является слабым местом сварного соединения.

В зоне IIIтемпература металла не превышает 1100 0 С. Здесь наблюдается структура нормализованной стали с характерным и мелкозернистым строением. Металл в этой зоне имеет более высокие механические свойства, чем металл I и II зон.

В зоне IYпроисходит неполная перекристаллизация стали, нагретой до температуры, лежащей между критическими точками. На этом участке после охлаждения наряду с крупными зернами феррита образуются мелкие зерна феррита и перлита. Металл этой зоны также обладает высокими механическими свойствами.

В зоне Yструктурных изменений стали не происходит, если сталь перед сваркой не подвергалась пластической деформации. В противном случае на этом участке наблюдается рекристаллизация.

В зоне YIсталь не претерпевает видимых структурных изменений. Но на этом участке наблюдается снижение ударной вязкости.

Строение сварного шва.

Строение сварного шва после затвердевания и распределения температуры малоуглеродистой стали показаны на рис. 5. Наплавленный металл 2 получается в результате перевода присадочного и частично основного металлов в жидкое состояние, образования жидкой ванночки и последующего затвердевания, в процессе которого расплавленный металл соединяется с основным 1. В узкой зоне сплавления 3 кристаллизуются зерна, принадлежащие основному и наплавленному металлу. Во всяком сварном шве образуется зона термического влияния 4, которая располагается в толще основного металла. В этой зоне под влиянием быстрого нагрева и охлаждения в процессе сварки изменяется лишь структура металла, а его химический состав остается неизменным.

Свойства металла в зоне шва определяются условиями плавления, металлургической обработки основного и присадочного металлов и кристаллизации металла шва при охлаждении. Свойства сварного соединения в целом определяются характером теплового воздействия на металл в околошовных зонах. Во время плавления основной и присадочный металлы сильно перегреваются иногда до температур, близких к температуре кипения. Это приводит к испарению металла и изменению химического состава сплава. Наличие газовой атмосферы вокруг плавящегося металла приводит в ряде случаев к окислению, взаимодействию металла с азотом и растворению в металле газов. Все это изменяет химический состав наплавленного металла, создает в нем окислы и другие неметаллические включения, поры и трещины. Чем чище наплавленный металл, тем выше механические свойства сварного шва.

С целью повышения качества наплавленного металла вокруг жидкого металла создают специальную газовую атмосферу, защищающую его от воздействия воздуха, раскисляют и прикрывают жидкую ванночку специальными шлаками.

Строение сварного шва после затвердевания и распределения температуры в малоуглеродистой стали показаны на рис. 5, б. Зона I примыкает непосредственно к металлу шва. Основной металл на этом участке в процессе сварки частично расплавляется и представляет собой смесь твердой и жидкой фаз.

Наплавленный металл имеет столбчатое (дендритное) крупнозернистое строение, характерное для литой стали. Если наплавленный металл или соседний с ним участок был сильно перегрет, то при охлаждении на этом участке (зона II) зерна основного металла (малоуглеродистой стали) образуют грубоигольчатую так называемую видманшгетовую структуру.

Металл этой зоны обладает наибольшей хрупкостью и является самым слабым местом сварного соединения. В зоне III температура металла не превышает 1100°С. Здесь наблюдается структура нормализованной стали с характерным и мелкозернистым строением. Металл в этой зоне имеет более высокие механические свойства (в сравнении с металлом первых двух зон).

В зоне IV происходит неполная перекристаллизация стали, нагретой до температуры, лежащей между критическими точками А и А . На этом участке после охлаждения наряду с крупными зернами феррита образуются мелкие зерна феррита и перлита. Металл этой зоны также обладает более высокими механическими свойствами.

В зоне V структурных изменений в стали не происходит, если сталь перед сваркой не подвергалась пластической деформации. В противном случае на этом участке наблюдается рекристаллизация.

В зоне VI сталь не претерпевает видимых структурных изменений. Однако на этом участке наблюдается резкое падение ударной вязкости (синеломкость).

Структурные изменения основного металла в зоне термического влияния незначительно отражаются на механических свойствах малоуглеродистой стали при сварке ее любыми способами. Однако при сварке некоторых конструкционных сталей в зоне термического влияния возможно образование закалочных структур, которые резко снижают пластические свойства сварных соединений и часто являются причиной образования трещин.

Размеры зоны термического влияния зависят от способа и технологии сварки и рода свариваемого металла. Так, при ручной дуговой сварке стали тонкообмазанными электродами (обмазку применяют в виде покрытия для защиты сварного шва от воздействия внешней среды) и при автоматической сварке стали под слоем флюса размеры зоны термического влияния минимальны (2-2,5 мм); при сварке электродами с толстой обмазкой протяженность этой зоны равна 4-10 мм, а при газовой сварке — 20-25 мм.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector