56 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Проверка сварных швов керосином и мелом

Как проверить качество и герметичность сварного шва трубы?

При строительстве протяженных трубопроводов образуется большое количество сварных соединений, от качества которых во многом зависит работоспособность системы. Дефекты сварного шва возникают из-за низкого качества труб, нарушения технологии сварки, недостаточной квалификации работника. Они приводят к ухудшению внешнего вида, снижению прочностных характеристик трубопровода, его долговечности. Могут быть поверхностными и внутренними, для выявления которых требуются специальные методы и оборудование. Чтобы проверить трубу на трещины и другие дефекты без нарушения целостности шва, применяют методы неразрушающего контроля.

Разновидности дефектов сварных швов

Появляются в результате затекания расплавленного металла на холодные участки трубы, находящиеся в околошовной области. Могут иметь вид отдельных капель или протяженных образований.

  • слишком большой сварочный ток;
  • неправильное движение электрода;
  • неправильный угол наклона труб при их соединении.

Сопровождающие явления: неравномерный провар шва, наружные и внутренние трещины.

Представляют собой канавки, появляющиеся на околошовных участках. Негативные последствия – снижение сечения шва, избыточные напряжения, провоцирующие образование трещин с возможным полным разрушением сварного соединения.

Отверстия, через которые протекает расплав из сварочной ванны.

  • недостаточная скорость сварочного процесса;
  • слишком большой зазор между торцами соединяемых труб;
  • превышение силы тока.

Внимание! Трещины – наиболее опасный вид брака. Могут образоваться в любой точке шва или околошовной области. Располагаются продольно или поперечно.

Подразделяются на микротрещины и трещины. Причины появления: неправильная технология сварки или повышенное содержание вредных примесей.

Особенно опасными являются остатки шлака на поверхности швов, ускоряющие коррозию стали.

Внутренние дефекты. Могут располагаться по отдельности, цепочками, группами. Этот вид брака снижает прочность. Цепочки пор провоцируют разгерметизацию системы.

Ультразвуковая дефектоскопия

Принцип действия ультразвуковых дефектоскопов основан на том, что в среде одинаковой структуры звуковая волна движется в постоянном направлении. При возникновении препятствия волна меняет направление – отражается.

Основные способы ультразвуковой дефектоскопии: эхолокация, теневой, зеркальный, зеркально-теневой, дельта.

Магнитный способ

Заключается в намагничивании исследуемой зоны и изучении магнитного рассеивания при возникновении структурных неоднородностей. Различают следующие подвиды способа:

  • Порошковый. Для его реализации применяют опилки железа, которые рассыпают на поверхности сварного шва. При создании магнитного поля частицы железа формируют картину магнитного спектра и сигнализируют о наличии глубинных трещин и пор.
  • Индукционный. В этом случае используются искатели, подающие звуковой или визуальный сигнал при рассеивании магнитного потока.
  • Магнитографический. Рассеивание потока регистрируется на магнитной ленте, находящейся на шовной поверхности. Поиск дефектов осуществляется сравнением полученных результатов с эталоном.

Как проверить сварной шов на герметичность?

Существует несколько способов проверки герметичности собранного трубопровода.

Герметичность сварного шва проверяется с помощью керосина, имеющего свойство проникать через внутренние поры и трещины. На сварной шов наносят водный меловой раствор с дальнейшим просушиванием. На сторону, противоположную поверхности, обработанной мелом, наносят керосин (в большом количестве). Если сварной шов поврежден, керосин проступит на меловом покрытии.

Проверка воздухом, подаваемым под давлением. Швы смазывают мыльной водой. При подаче сжатого воздуха на негерметичном шве появляются мыльные пузыри.

С помощью газоэлектрического искателя

Этот способ используется для проверки ответственных трубопроводных систем. Для его реализации применяют высокопроницаемый газообразный гелий. Появление газа фиксируется специальным щупом, а его количество определяется с помощью электронного блока.

Как проверить трубы системы «теплого пола»?

Перед укладкой чистового пола обязательно проводят проверку тепловых труб на герметичность. Способ определяется материалом трубопровода.

Проверку металлопластиковых труб проводят в течение суток холодной водой, подаваемой под давлением в 6 бар. Если давление не изменилось, то считается, что система успешно прошла испытание.

Трубопровод из сшитого полиэтилена проверяют холодной водой при давлении, превышающем рабочее в 2 раза, но не менее 6 бар. Давление будет падать. Через полчаса необходимо восстановить проверочное давление. Эта процедура повторяется 3 раза. После третьего раза доводят давление до проверочного и оставляют на сутки. Если после этого протечки не появились, а давление упало не более чем на 1,5 бара, то система считается работоспособной.

После опрессовки трубопровода с холодной водой под давлением проводится дополнительная проверка системы «теплого пола» при максимальной рабочей температуре. Систему разогревают на 30 минут. После этого проверяют на герметичность все цанговые соединения. При необходимости их подтягивают.

Внимание! Стяжку можно заливать после остывания системы. Трубы обязательно должны быть под давлением.

Испытание сварных швов на герметичность. Контроль сварных соединений на непроницаемость.

Содержание

  1. Назначение и сущность контроля швов на герметичность
  2. Гидравлические испытания сварных соединений на герметичность
  3. Пневматические испытания сварных изделий
  4. Испытание сварных швов керосином
  5. Проверка герметичности сварных швов аммиаком
  6. Проверка сварных швов течеискателем
    • Видео на тему: проверка сварного шва течеискателем

Назначение и сущность контроля швов на герметичность

Во многих случаях, к сварным швам предъявляются требования по непроницаемости, т.е. соединения должны быть герметичны. Герметичность — это способность сварного шва не пропускать через себя жидкие и газообразные вещества.

Контроль на непроницаемость — это один из видов неразрушающего контроля сварных швов, сущность которого заключается в измерении или оценке утечки рабочей жидкости или газа, проходящего через сквозные дефекты и в сравнении величины этой утечки с допустимым значением, согласно техническим условиям.

Проверку на герметичность в обязательном порядке проходят сварные ёмкости для жидкостей, трубопроводы, гидродомкраты, котлы и другие конструкции, к которым предъявляются требования к герметичности.

Перед контролем, поверхности проверяемых швов необходимо очистить, обезжирить и удалить жидкости из сварочных дефектов. Для очистки и обезжиривания поверхностей рекомендуют применять растворы щелочей и органические растворители, такие как бензин, ацетон и др.

Гидравлические испытания сварных соединений на герметичность

При таком методе контроля, проверяемую сварную конструкцию наполняют водой и при помощи насоса или гидравлического пресса, создают давление в сосуде, в 1,5-2 раза превышающее рабочее давление. Контролируемую конструкцию выдерживают под давлением жидкости в течение 5-10мин. В этом время необходимо наблюдать за сварными швами, чтобы выявить в них утечки испытательной жидкости, вынос капель и отпотевания, если они возникнут.

Пневматические испытания сварных изделий

Пневматическое испытание представляет собой проверку сжатым газом или паром, который подаётся в контролируемое сварное изделие. В качестве сжатого газа обычно используют воздух, азот, или инертные газы. Если позволяют габариты сварного соединения, то его можно погрузить в воду и по выходящим из сквозных дефектов пузырькам газа выявляют места расположения дефектов.

Сварные стыки на крупногабаритных сосудах и трубопроводах рекомендуется контролировать при помощи пенного индикатора, который наносят на сварные швы. Пенный индикатор, получивший наибольшее распространение — это обычный водный раствор мыла. Если испытание происходит при низких температурах, то в качестве индикатора применяют смесь мыльного раствора и глицерина или льняное масло.

На рисунке ниже представлена схема пневматического испытания:

При пневматических испытаниях необходимо строгое соблюдение правил безопасности. На подводящей магистрали обязательно наличие запорных и предохранительных клапанов. И кроме рабочего манометра в схему обязательно должен быть включён контрольный манометр. При испытании под давлением обстукивание и исправление дефектов в сварных швах не допустимы, т.к. представляют собой опасность для человека.

Испытание сварных швов керосином

Данный метод контроля основан на свойстве жидкостей, в данном случае, керосина, подниматься по трубкам с небольшим поперечным сечением. В данном испытании роль таких трубок исполняют сквозные сварочные трещины и другие сквозные дефекты.

Сущность такого испытания состоит в следующем. На одну сторону стыкового сварного шва наносят водный раствор мела и выдерживают некоторое время, пока данный раствор не высохнет. После высыхания, противоположную поверхность сварного шва смачивают керосином и выдерживают некоторое время. Продолжительность выдерживания определяется толщиной свариваемых деталей и температурой окружающего воздуха. Чем толще детали и чем ниже температура, тем больше время выдержки.

Читать еще:  Усиление сварных швов наплавкой

Проверка герметичности сварных швов аммиаком

Проверка аммиаком заключается в том, что поверхность проверяемых швов покрывается бумажной лентой или марлей, которую предварительно пропитывают 5%-ным раствором нитрата ртути или индикатором фенолфталеином. Далее в изделие подают воздух до определённого давления и, одновременно с этим, подают некоторое количество аммиака. Про ходя через сквозные дефекты, аммиак оставляет чёрные следы на бумаге, пропитанной нитратом ртути, или красные следы, если бумага пропитана фенолфталеином.

Проверка сварных швов течеискателем

Течеискатели для проверки герметичности бываю гелиевые и галоидные. В случае применения гелевых течеискателей, внутри проверяемого изделия создают вакуум, а снаружи сварные швы обдувают в струе воздуха, в смеси с гелием. Если в сварных швах изделия присутствуют сквозные дефекты, то гелий проникает внутрь сосуда и затем он улавливается с помощью течеискателя.

Если для контроля сварки используют галоидный течеискатель, то внутри проверяемого сосуда создают избыточное давление и добавляют туда немного галоидного газа. Этот газ проходит через сквозные дефекты, отсасывается снаружи и подаётся на специальные аппараты. По наличию галоидного газа снаружи определяется наличие или отсутствие сквозных сварочных дефектов в соединении.

Видео на тему: проверка сварного шва течеискателем

Проверка швов течеискателем относится к высокочувствительным методам проверки и применяется, как правило, для контроля ответственных сварных соединений.

Герметичность сварных швов

Автор: Игорь

Дата: 10.03.2018

  • Статья
  • Фото
  • Видео

Проверка на герметичность сварных швов необходима при работе изделия под давлением, с жидкотекучими и газообразными средами. Это относится к трубопроводам, емкостям, резервуарам и подобным элементам конструкции. Контролю подвергаются сварные швы роликового и точечного типа. Описывает требования к проверке на герметичность сварных швов ГОСТ 3242-69.

Все виды контроля направлены на определение и устранение некачественных изделий при приемке, их применение определяется точными вычислительными приборами, инструментами технологиями, позволяющими узнать, как проверить сварной шов на герметичность с точностью до микрон.

Испытание герметичности сварного соединения

Определение герметичности шва

«Важно! Проверка готового изделия осуществляется предприятием изготовителем, в процессе эксплуатации, эту процедуру выполняет владелец в указанные сроки в нормативно-технической документации.»

Существует несколько методов проверки, каждый из которых имеет узкую направленность. Важно применять метод, наиболее приемлемый в конкретных условиях.

Методы контроля выбираются в зависимости от условий эксплуатации изделия:

  • химических свойств рабочей среды;
  • физических параметров:
    • давления;
    • температуры;
    • времени эксплуатации.

Проверка герметичности сварных швов предназначена для всех изделий ответственного назначения. Требования к проверке точечного и роликового соединения различаются из-за принципиального различия технологии, формы и назначения. В отличие от всех возможных способов, керосиновая проба сварных швов позволяет провести это исследование в домашних условиях.

  • Роликовая сварка это разновидность точечной, но за счет особой формы электродов, представленных в виде двух роликов, через которые проходит ток, шов получается цельный. Соединение поверхностей происходит методом накладывания друг на друга, поэтому этому виду сварки присущи такие виды брака, как:
    • непровар (в случае недостаточной силы тока, прижимного давления или подачи тока недостаточной продолжительности по времени),
    • недостаточное перекрытие места стыка,
    • выплески металла (наружные и внутренние). Определение причины, а также точного места затрудняется из-за соединения методом нахлестки.

Осложняется недоступным наблюдением шва под нахлесткой, при котором дефекты, а также точное место нахождения становятся трудно определяемыми.

  • Точечный тип сварки представляет собой вид шва, в котором цельный шов выполнен в виде точек, накладывающихся одна на другую. Может выполняться электродуговым, точечным, наплавляемым методами.

В этом случае соединение двух поверхностей проводится стык в стык. Обнаружение брака упрощается благодаря открытому соединению. Доступная визуализация позволяет выявить плохой сварочный шов, являющийся причиной дефекта. Этому типу сварки присущи следующие виды брака:

    • непровар;
    • прожег;
    • выплеск;
    • сбой в расчетах.

Как исправляются свищи в сварном шве при их выявлении? В большинстве случаев, это место обрубается и сваривается, при невозможности такого подхода, каждое изделия рассматривается комиссионно. Изделие могут переназначить для другого, менее ответственного использования или забраковать полностью.

Гидравлическое испытание сварного шва

Проводится при помощи воды, которая подается под давлением в 1,5-2 раза превышающее рабочее давление сосуда. В течение 10-15 минут проверяется герметичность швов: запотевание, увлажнение и т.д.

Пневматическое испытание шва

Самый экологический способ. Такой дефект как свищ сварного шва может образоваться в процессе эксплуатации, в местах, где происходит критическое напряжение в структуре металла, или же из-за точечной коррозии, а также при некачественном сварном соединении. Проверка пневматикой или вакуумом. На одну сторону шва наносят мыльный раствор, на противоположную крепят камеру вакуумирования. При наличии трещины воздух поступает в камеру, а место течи определяется по пузырькам. К недостаткам можно отнести небольшую производительность и техническую нерентабельность при проверке больших емкостей.

Пневматическое испытание шва

Проверка сварных швов керосином

Как проверить сварной шов на герметичность керосином? Это вещество выбрано не случайно: оно обладает высокой текучестью, больше чем у воды в несколько раз. Кроме того, проверка сварных швов керосином позволяет определить микроскопические трещины и свищи в домашних условиях, без сложных приспособлений. Проводится он следующим образом: на проверяемую поверхность наносят меловую пленку, которая должна послужить индикатором, а на обратную сторону заливают керосин.

Проверка герметичности керосином

Проверка шва аммиаком

Такой тип проверки также основывается на показаниях индикаторов. Проводится он при помощи сжатого воздуха, в который добавлен раствор аммиака. С противоположной стороны накладывается бумага или чисты медицинский бинт. Веществом–индикатором является фенолфталеин, которым пропитывают материал или 5 % нитрат ртути. При соприкосновении аммиака и индикатором происходит реакция, образующая фиолетовый цвет.

Испытание сварного соединения течеискателем

Самый сложный метод из всех существующих, но его использование позволяет не только определить место протечки, а еще и расчетный путем установить его размер. В качестве рабочей среды могут выступать 3 вещества:

  • галоидный газ (фреон-12);
  • двуокись углерода;
  • четыреххлористый углерод;
  • гелий.
  1. Используется установка течеискателя с установленным в нем платиновом разогретом щупе и регистратором миллиамперметром. Проводится следующим образом: погруженный испытываемый сосуд в емкость подвергается двойному давлению. Во внутрь подается рабочий газ, а с наружной стороны наоборот — газ отсасывается в спец. приемник с платиновым щупом. При появлении ионов газа происходит реакция с ионами, находящимися на щупе, что фиксируется амперметром.
  2. Поэтому же принципу работы основан и второй способ, с гелием. Только при попадании в вакуумную среду, ионы гелия, попадая на коллектор ионов, создают электрический разряд. В обоих случаях подсчитывают размеры трещины с помощью миллиамперметра.
  3. В случае с проверкой углекислотным газом, расчет ведется по принципу изменения теплопередачи между нагретыми платиновыми проволоками до 100 ºС и попавшими в камеру молекулами СО Чувствительная проволока увеличивает сопротивление, что приводит к разбалансировке и отклонению измерительного прибора.
Заключение

Проверка сварных соединений зависит от формы и размера изделия. Условно можно подразделить способы на 2 вида:

  • доступности обеих сторон;
  • одностороння доступность.

Кроме того некоторые доступные методы объясняют, как проверить сварочный шов на герметичность в домашних условиях, без трудоемких затрат и специфических приборов, например, такой как проверка сварочного шва на герметичность керосином.

Читать еще:  Как правильно сделать шов электросваркой?

В продажу изделия поступают в проверенном состоянии, а для безопасной эксплуатации составлен на каждый тип изделия свой график осмотра и проверки максимально удобным владельцу методом.

Суть проверки сварных швов на герметичность. Характеристика и технология основных способов

Кроме прочности, сварные соединения сооружений и изделий должны обладать герметичностью (непроницаемостью).

Понятие о контроле сварных швов на герметичность

Под контролем герметичности подразумевается вид неразрушающего контроля, при котором оценивается или измеряется суммарный поток (натеканий, утечек) рабочей среды (газа, жидкости), просачивающейся сквозь неплотности. Полученное значение сравнивается с допустимой нормой, приведенной в технических условиях.

Способы контроля герметичности подразделяются по критериям:

К простейшим методам контроля сварных швов на герметичность относятся капиллярные, компрессионные, вакуумные.

Испытание на непроницаемость проводится после визуального осмотра сварных швов. Контрольной проверке на непроницаемость подлежат швы изделий для транспортировки и хранения газа и жидкостей. Контроль осуществляется с применением аммиака, керосина, способом вакуумирования, гидравлических и пневматических испытаний.

Требования к сварным изделиям, подлежащим контролю на непроницаемость:

  • соответствие их изготовления чертежам, техническим условиям;
  • наличие сопроводительной документации;
  • поверхность должна быть подготовлена к испытаниям.

Способы проверки

Контроль сварных швов на герметичность проводится такими способами:

  • керосином;
  • аммиаком;
  • пневматическим;
  • гидравлическим;
  • вакуумом.

Керосином

Метод используется для проверки плотности сварных швов сосудов и резервуаров из металла до 10 мм толщиной, не работающих под давлением.

В основе проверки керосином лежит явление капиллярности. Суть способа состоит в способности керосина подниматься по сквозным порам и трещинам. Испытание керосином позволяет выявить дефекты, имеющие размер от 0.1 мм.

Технология заключается в обмазывании шва с одной стороны раствором мела или каолина в воде. После высыхания мелового состава шов с обратной стороны смачивается несколько раз керосином. Если имеются трещины, поры, несплошности, через них просачивается керосин и проявляется пятнами на меловой покраске.

Время испытания керосином:

  • при температуре выше 0 °С – от 4 часов, ответственных изделий – 12 часов;
  • при отрицательной температуре – от 8 часов, для серьезных объектов – 24 часа.

Аммиаком

Метод основан на свойстве индикаторов определенного вида (раствор азотно-кислой ртути или фенолфталеина) изменять окраску в результате воздействия сжиженного аммиака. Применяется для испытания замкнутых сварных сосудов на плотность.

Методика процесса состоит в оклеивании сварного шва снаружи полосками бумаги, пропитанными 5% раствором азотно-кислого серебра. В контрольный сосуд нагнетается сжатый воздух с содержанием 1% аммиака. Пары аммиака проходят сквозь неплотности шва, реагируют с азотно-кислой ртутью, вызывая окрашивание бумаги в серебристо-черный цвет напротив расположения дефекта. Если в качестве индикатора используется раствор фенолфталеина, окраска бумаги будет ярко-красной.

Характер и размеры дефекта зависят от скорости появления следов на бумаге, их размеров и формы.

Время проникновения аммиака сквозь неплотности сварного шва составляет от 10 минут до получаса.

Пневматическим способом

Метод предназначен для проверки плотности сварного шва изделий, работающих под давлением. В замкнутый сосуд небольшого размера, герметизированный заглушкой, до давления, на 10-20% превышающее рабочее, нагнетается сжатый воздух. Изделие погружается в воду. Наличие дефектов сварного шва определяется по пузырькам воздуха, выходящим через неплотности.

Крупногабаритные предметы герметизируют, швы промазывают мыльным раствором. В испытуемую конструкцию под давлением, превышающим рабочее на 10-20%, подается газ. Признаком дефекта является появление пузырей на шве, смоченном мыльным раствором.

Проверка крупных сосудов и газопроводов проводится на падение давления. Ввиду большой протяженности швы не обмыливают. Наличие дефектов определяется по падению давления за период 24 часа.

Испытание под давлением не допускает обстукивания сварных швов. Проверка проводится в изолированном помещении. Проведение контроля крупногабаритных изделий требует соблюдения осторожности.

Гидравлическим

В зависимости от типа конструкции существует 3 вида гидравлических испытаний:

  • гидравлического давления (гидравлические системы, трубопроводы);
  • налив воды (цистерны, баки, резервуары);
  • полив струей воды с одной стороны (изделия большой протяженности).
  1. Способ гидравлического давления. Проверяемый объект герметизируется и заполняется под давлением рабочей жидкостью или водой. Вид жидкости, ее давление и время испытания зависят от назначения контрольного образца. Цифра пробного испытательного давления указывается в проекте. Для трубопроводов составляет 1.25 и более значения рабочего давления. Пробный контроль проводится при температуре воздуха выше нуля. Результат считается удовлетворительным, если на сварном шве отсутствует запотевание и не обнаружена течь, а манометрическое давление не упало.
  2. Контроль наливом. Изделия до заданного уровня заполняется водой. При температуре воздуха выше 0° С, воды – выше 5° С, время выдержки – до 24 часов. Требуется постоянное наблюдение за понижением уровня воды и состоянием сварных швов. Шов, находящийся сверху, при обнаружении дефектов освобождается от воды, дефекты устраняются, вода доливается с целью испытания вновь заваренного участка шва. Операции повторяются до полного устранения всех дефектов.
  3. Полив струей воды. Испытание проводится струей воды из брандспойта с выходным отверстием от 15 мм. Скорость движения струи, направляемой вдоль шва, 1 м/мин. Давление воды в шланге – не менее 1 атм. Расстояние от наконечника брандспойта до поверхности изделия – до 2 м. Поверхность стороны исследуемого образца, обратная от поливаемой водой, должна быть сухой. Ее осмотр выполняется одновременно с поливом. Дефектные места проявляются возникновением течи, появлением капель воды, запотеванием поверхности сварного шва или околошовной зоны.

Вакуумом

Способ заключается в изоляции испытуемого изделия от внешней атмосферы путем откачки воздуха и проверки вакуума. При наличии в сварных швах дефектов вакуум будет нарушаться.

Метод подходит для контроля герметичности швов, к которым имеется доступ лишь с одной стороны – днищ вертикальных резервуаров, газгольдеров, гидроизоляционных ящиков, кровель цилиндрических нефтерезервуаров. Проверка осуществляется вакуум-прибором.

Камера устройства устанавливается на стык шва, обмазанный индикатором – мыльным раствором – и включается насос. Под воздействием атмосферного давления воздух проходит сквозь неплотности сварного соединения, и в местах дефектов возникают мыльные пузыри, которые можно наблюдать через стекло камеры. В условиях низких температур к пенному индикатору добавляется хлористый натрий (поваренная соль) или хлористый кальций.

Дефектоскопия сварных швов

Сварные швы в большинстве случаев являются наиболее уязвимым местом многих конструкций. Поэтому при завершении сварки проверка сварных соединений не просто важна, а является необходимым, неотъемлемым элементом проведения качественных сварочных работ.
Контроль любого сварочного соединения начинают с проведения его внешнего осмотра, это делают в независимости от применения в дальнейшем иных методов контроля.
Визуальный контроль самый простой и дешёвый, но вместе с тем довольно эффективный метод. В случае надобности его без особых затруднений можно провести повторно.
Визуальная проверка осуществляется невооружённым глазом либо с помощью увеличительных луп. Для контроля геометрических размеров используются линейка, угломеры, штангенциркуль и т. д.
Позволяет выявить прожоги, наплывы, чрезмерную чешуйчатость и многие другие дефекты, получить до половины всей необходимой информации.
Основным недостатком визуального контроля следует назвать очень высокое значение человеческого фактора, общую субъективность проверяющего и невозможность обнаружить с помощью этого метода подавляющее большинство внутренних дефектов.

Капиллярный контроль основан на проникновении в поры и трещины на поверхности проверяемого сварного шва жидкости с высокой смачиваемостью, которая служит индикатором наличия дефектов. Подобная жидкость характеризуется также высокой цветовой и световой контрастностью. Называются подобные вещества пенетрантами. Их существует десятки разновидностей на основе воды, керосина, скипидара, и других. Если в составе пенетрантов содержатся красящие вещества, то дефектоскопию называют цветной, если люминесцирующие – люминесцентной.
Наиболее чувствительные из пенетрантов могут выявлять дефекты с поперечным размером 0,1-1 мкм, верхняя граница данного метода – 0,5 мм. Глубина капилляра должна быть как минимум на порядок больше его ширины.
Обычно пенетранты выпускают в аэрозольных баллончиках, хотя их допустимо хранить в любых ёмкостях. Наносить на сварной шов можно любым удобным способом. Перед этим необходимо очистить поверхность от ржавчины, а также от других загрязнений. После чего поверхность следует обезжирить и просушить. Чтобы не внести в капилляры новых посторонних включений желательно завершать очистку, идущим в комплекте очистителем, протирая поверхность материалом, который не оставляет волокон.
Затем наносится сам пенетрант.
После выдержки от 5 до 20 минут (это определяется из инструкции к конкретному составу) лишний пенетрант осторожно удаляется.
Далее на поверхность наносят проявитель, жидкость, вытягивающую пенетрант из дефектов.
К основным плюсам подобного метода, прежде всего, следует отнести:
Высокую чувствительность и достоверность при относительной дешевизне использования.
Благодаря лёгкости транспортировки без труда может применяться на удалённых объектах.
Позволяет провести проверку быстро, просто и эффективно.
Главными минусами капиллярного контроля являются:
Возможность выявления лишь дефектов на поверхности;
Трудность проведения контроля при отрицательных температурах;
Невозможность применения такого метода после поверхностной обработки шва.

Читать еще:  Чем промазать швы на крыше гаража?

Часто используют обследование сварных соединений на герметичность, применяя керосин. Благодаря своим свойствам он может проникать через мельчайшие трещины. Основывается этот метод, как и проверка пенетрантами, на процессах капиллярности.
Вначале поверхность очищают, затем сторону, которую легче наблюдать покрывают водной суспензией мела или каолина.
После её высыхания другую сторону шва несколько раз за 15—30 минут сильно смачивают керосином. Если сварные швы не герметичны на суспензии появляются точки или тёмные полосы. При комнатной температуре такая проверка должна продолжаться несколько часов. Так как из-за керосина может начаться коррозия в стыке деталей после завершения контроля, его следует удалить подогрев данные детали горелкой.

Одним из главных и повсеместно применяемых методов является ультразвуковая дефектоскопия. В основе этого метода лежит способность ультразвука проникать в металл на значительную глубину, отражаться и преломляться от границы соприкосновения сред с различными акустическими свойствами. Ультразвуковые сигналы в среде испускаются и фиксируются специальным оборудованием (ультразвуковым дефектоскопом и пьезоэлектрическими преобразователями). После анализа полученных данных выявляются дефекты, глубина их залегания, форма и вид.
Основными достоинствами ультразвукового метода являются:
Возможность использования в ряде случаев ультразвуковой проверки без выведения из эксплуатации контролируемого объекта;
Хорошая скорость и точность проверки шва;
Невысокая стоимость работ.
К главным недостаткам относятся:
Невозможность узнать о реальных размерах дефекта. Например, сигнал от двух дефектов одинаковой формы и размера, находящихся на одной глубине, но заполненных один шлаком, а другой воздухом, будет разной амплитуды. В результате они станут оцениваться, как объекты разного размера.
Возникновение существенных затруднений при контроле металлов с крупнозернистой структурой (например, чугун, медь, аутентичные стали), потому что звук в них сильно рассеивается и быстро затухает.
Наличие даже малейшего воздушного зазора между пьезоэлектрическим преобразователем и проверяемой поверхностью может сделать невозможным применение этого метода.

Радиографический метод базируется на свойстве рентгеновского излучения проходить через металл и сильнее засвечивать рентгеновскую плёнку, находящуюся с другой стороны шва. Там, где есть непровары, трещины, шлаковые включения и некоторые другие дефекты лучи поглощаются в меньшей степени, а значит, сильнее засвечивают светочувствительный слой плёнки. Затем рентгенографические плёнки проявляют, и с помощью негатоскопа выявляют дефекты.
К основным достоинствам рентгеновского контроля нужно отнести:
Способность найти дефекты, которые иным методом обнаружить не удаётся.
Даёт точное расположение дефектов.
Позволяет наглядно определить вид и характер дефектов в сварном соединении.
Главными недостатками метода являются опасность рентгеновского излучения для здоровья человека и высокая цена оборудования.

Капиллярный контроль

Неразрушающий контроль, в том числе капиллярный метод, – это эффективное, а в ряде случаев единственно возможное средство предотвращения аварийных ситуаций в объектах повышенной опасности. Задача ученых, инженеров-конструкторов, инженеров-технологов – разработать аппаратуру и технологию контроля, которая давала бы возможность дефектоскописту определить только пригодные к эксплуатации детали и не пропустить дефектные.

Дефектоскопист – последняя инстанция, которая может предотвратить аварию, отказ, непредвиденную остановку машины или механизма. Особая ответственность лежит на дефектоскопистах, контролирующих детали авиационной и космической техники, локомотивов и вагонов; оборудования атомных, энергетических и химических производств, представляющих огромную опасность не только для человека, но и окружающей среды.

Во всем мире неразрушающий контроль качества и техническая диагностика – это целая индустрия, неотъемлемая часть производства и эксплуатации всех технических устройств: сотни тысяч специалистов ежедневно обеспечивают отбраковку некачественных деталей при производстве (качество) и своевременное обнаружение опасных трещин на работающих технических устройствах (диагностика), прежде всего опасных для жизни, здоровья людей и окружающей среды (безопасность).

Уровень развития передовых стран мира на современном этапе характеризуется не столько высоким объемом производства и ассортиментом выпускаемой продукции, сколько показателями качества, надежности и безопасности.

В высокоразвитых странах затраты на контроль качества составляют в среднем 1 – 3 % от стоимости выпускаемой продукции, а в таких отраслях промышленности, как оборонная, атомная, а так-же аэрокосмическая, затраты на контроль качества возрастают до 12 – 18 %. Трудозатраты на контроль сварных соединений в строительстве трубопроводов большого диаметра и большой протяженности достигают 10 %. Во всем мире давно поняли, что экономия на контроле – это мнимая экономия, которая в конечном итоге оборачивается огромными затратами на преодоление последствий аварий и катастроф.

На стадии изготовления необходима объективная информация о свойствах детали, которая даёт возможность судить о качестве детали, её пригодности к работе и конкурентоспособности изделия в целом.

Использование средств неразрушающего контроля в процессе эксплуатации позволяет диагностировать техническое состояние объекта, определить его остаточный ресурс, сроки дальнейшей безопасной эксплуатации. Диагностика особенно актуальна для таких потенциально опасных технических объектов, как оборудование магистральных нефте- и газопроводов, химических и нефтеперерабатывающих производств, сосудов под давлением, подъемно-транспортных устройств и др., особенно если принять во внимание, что среди них многие уже выработали свой ресурс.

Суждение о работоспособности и качестве достигается через выявление с помощью приборов неразрушающего контроля и технической диагностики:

  • поверхностных и внутренних дефектов сплошности материала, деталей и элементов конструкций (трещин, раковин, пор, расслоений и т.п.);
  • недопустимых изменений структуры материала и физико-механических свойств (размер зерна, плотность, упругие и прочностные характеристики, твердость, внутренние напряжения, влажность и др.);
  • отклонений геометрических параметров (толщин покрытий, поверхностно упрочненных слоев, толщин стенок деталей и элементов конструкций и др.);
  • внутреннего строения объектов (интроскопия).

Капиллярная дефектоскопия является старейшим методом неразрушающего контроля и самым чувствительным методом неразрушающего контроля поверхностных дефектов. Капиллярный метод позволяет выявить поверхностные трещины раскрытием 0,5 – 1 мкм и более. Он основан на проникновении в поверхностные дефекты специальных жидкостей, благодаря которым повышается свето- и цветоконтрастность дефектного участка относительно неповрежденного участка поверхности детали. Достоинством метода является то, что точно фиксируется местоположение дефекта, его ориентация и размеры. Его эффективность в большой степени зависит от правильности соблюдения технологических режимов всех стадий, которые определяются физико-химическими процессами, протекающими при проведении контроля.

Наиболее эффективен капиллярный метод для неразрушающего контроля больших площадей, особенно со сложной геометрией и в случаях массовых производств. Технологов прельщает возможностью обнаружить дефект на ранних стадиях изготовления, а также на всех стадиях технологического процесса изготовления. Технология капиллярной дефектоскопии сравнительно проста и не требует сложного дорогостоящего оборудования.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector