15 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Люминесцентный контроль сварных швов

Цветная дефектоскопия

Капиллярные методы контроля.

ООО «ЛЕНТЕСТ» имеет огромный опыт капиллярного контроля. Наиболее часто заказывают контроль, где проникающая в дефекты поверхности жидкость окрашена в ярко-красный цвет, и называется это цветной дефектоскопией. Реже заказывают контроль, где проникающая в дефекты поверхности жидкость светится в ультрафиолетовых лучах. Последний вариант (люминесцентный контроль) более чувствителен, обнаруживает дефекты с микронным раскрытием, но более затратный и применяется только на особо ответственных изделиях. Многие нормативные документы, правила безопасности ставят знак равенства между магнитным и капиллярным контролем, т.е. предлагают провести контроль на выбор. Наш опыт показывает, что на ферро- магнитных материалах эффективность магнитного контроля ощутимо выше. На практике из-за того, что капиллярный контроль безразличен к «ферромагнитности» и не требует приборной базы он имеет безусловное лидерство. Подробнее о капиллярном методе контроля

Необходимо учесть, что капиллярный контроль требует подготовки поверхности (Rz не хуже 20).

Ценообразование, как всегда, зависит от многого, для ориентировки (может ведь оказаться и дешевле при уточнении задачи – надо звонить)

1кв. метр цветной дефектоскопии – 2500-3000 рублей
1 п. метр шва — 600 рублей

Желаем нашим Заказчикам только годных поверхностей!

«Капиллярные (КД): цветной (ЦД) и люминесцентный (ЛД) методы контроля предназначены для обнаружения поверхностных дефектов типа трещин, раковин, пор, свищей, непроваров и др. Они основаны на проникновении в открытые полости поверхностных дефектов смачиваемых цветной или люминесцирующей жидкости и регистрации дефектов по цветному (обычно красному) рисунку(следу) на белом фоне наносимого на контролируемую поверхность проявителя (каолина), вытягивающего цветную индикаторную жидкость на поверхность слоя проявителя (ЦД) или по свечению люминесцирующей индикаторной жидкости при облучении поверхности ультрафиолетом (ЛД).

В лаборатории «ЛЕНТЕСТ» имеются современные дефектоскопические наборы (баллончики и др.), позволяющие проводить капиллярный контроль на требуемом стандартами уровне по I классу чувствительности.

Капиллярный контроль имеет высокую чувствительность к выявлению мелких поверхностных дефектов (раскрытие 0,0001-0,001 мм., глубина 0,02 мм.). Однако, например, в сравнение с магнитно-порошковым методом контроля поверхностей, требует значительно более высокой чистоты зачистки поверхностей контролируемой детали с целью удаления загрязнений из полостей поверхностных несплошностей.

Капиллярный контроль основан на капиллярном проникновении индикаторных жидкостей (благодаря чему так же носит название цветная дефектоскопия) в полости дефектов и предназначены для выявления дефектов, имеющих выход на поверхность объекта контроля. Капиллярный метод контроля пригоден для выявления несплошностей с поперечными размером 0,1 — 500 мкм, в том числе сквозных, на поверхности черных и цветных металлов, сплавов, керамики, стекла и т.п. Широко применяется для контроля целостности сварного шва.»

Неразрушающие методы контроля качества сварки пластмасс

Все сварные соединения подвергаются визуально-измерительному контролю (контролю внешним осмотром).

Внешний осмотр соединения позволяет установить искажение формы шва, выявить трещины, непровары, смещение деталей, прожоги, деформации, уменьшение толщины шва, подрезы, вмятины, несовпадение кромок. Вид сварных швов должен сохраняться постоянным по всей их длине. Сравнение цвета шва и основного материала позволяет в отдельных случаях судить о соблюдении технологического режима, о деструкции материала при сварке.

Внешнему осмотру следует подвергать все сварные соединения независимо от применения других методов контроля. При внешнем осмотре изделий, выполненных из оптически прозрачных материалов (полиметилметакрилата, полиэтилена, полистирола без красителей и др.), следует использовать сильный источник света, освещающий деталь либо под углом, либо с торца; таким образом удается выявить некоторые внутренние дефекты сварного шва. Наиболее ценная информация при контроле внешним осмотром может быть получена при исследовании сварных соединений из пленочных материалов, синтетических тканей и нетканых материалов. По внешнему виду сварной шов этих материалов должен быть ровным, без складок и сборок. Края шва должны иметь округлые очертания без резких переходов.

При контроле сварных соединений из «жестких» пластмасс результаты внешнего осмотра могут подтверждаться и уточняться люминесцентными методами контроля.

Визуально-измерительный контроль служит для выявления поверхностных или сквозных дефектов сварного соединения. Внутренние дефекты (поры, посторонние включения, нарушения внутренней геометрии и т.д.) этим способом обнаружены быть не могут. Для контроля внутренних областей сварного соединения из пластмасс применяются различные физические неразрушающие методы испытаний. Рассмотрим кратко сущность этих методов.

Неразрушающие методы контроля сварных соединений термопластов включают:

  • радиационные методы (инфракрасная и рентгенографическая дефектоскопия);
  • ультразвуковой метод;
  • капиллярные методы;
  • радиотехнические методы;
  • электростатический метод;
  • электроискровой метод;
  • электролитный метод;
  • тепловой метод;
  • оптические методы.

Инфракрасная дефектоскопия. Методы инфракрасной дефектоскопии основаны на регистрации инфракрасного излучения, отраженного или прошедшего через исследуемую среду. Контроль производится следующим образом. Поток ИК-излучения направляется излучателем на изделие. Спектр излучаемого сигнала зависит от типа ИК-источника.

Возможность выявления дефектов и внутренней структуры материала основывается на зависимости между оптической плотностью исследуемого мате- риала и интенсивностью прошедшей лучистой энергии. При таких испытаниях хорошо выявляются внутренние трещины, несплавления и пустоты диаметром около миллиметра и более.

Рентгенографический метод контроля состоит в том, что через исследуемый материал с различными структурой или дефектами пропускается рентгеновское излучение. Преобразование прошедшего излучения в видимое изображение с помощью фотопленки или флюороскопического экрана позволяет судить о внутреннем состоянии изделия. Таким образом можно выявить характер, границу, конфигурацию и глубину залегания дефекта. Чем больше плотность материала, чем больше он ослабляет излучение, тем более высокую контрастную чувствительность будет иметь рассматриваемый способ контроля.

Поскольку коэффициент ослабления излучения у большинства пластмасс весьма мал, следует уменьшать напряжение на трубке. Таким образом, основной особенностью рентгеновского контроля сварных соединений термопластов является необходимость применения более мягкого излучения по сравнению с излучением, используемым при контроле сварных металлических конструкций.

Капиллярные методы дефектоскопии основаны на способности жидкости проникать в поверхностные дефекты изделия. Они применяются для обнаружения всех типов поверхностных трещин, расслоений, течей в сварных конструкциях из полимерных материалов.

К капиллярным методам относятся: люминесцентный, цветной (метод красок) и люминесцентно-цветной. В первом и третьем методах применяют люминесцентные жидкости, которые высвечиваются под действием ультрафиолетовых лучей. Во втором методе в качестве проникающих жидкостей используются красящие жидкости.

Методика проведения контроля аналогична методикам, используемым при контроле металлических сварных конструкций.

С помощью проникающих жидкостей возможен контроль сквозных отверстий на соединениях из полимеров небольшой толщины (от 0,5 до 3,0 мм).

Радиотехнические методы контроля основаны на применении радиоволн сверхвысоких частот – от 1 до 100 ГГц. Радиоволны хорошо проникают в диэлектрики. В этом случае не требуется контакта между зондирующим устройством и контролируемым изделием. При наличии в изделии трещин, инородных включений и прочих дефектов радиоволны, отражаясь или проходя через них, меняют фазу (фазовый метод), амплитуду (амплитудный метод) или характер поляризации (поляризационный метод).

Радиотехнические методы применяют для контроля сварных конструкций, у которых швы не имеют грата. При этом выявляются трещины с раскрытием более 0,1 мм и глубиной более 3 мм, непровары; особенно хорошо выявляются инородные включения.

Электростатический метод, как и капиллярные методы, позволяет выявить поверхностные дефекты (трещины, поры, несплошности и др.) в сварных соединениях из пластмасс. Метод прост, дешев, высокопроизводителен.

Методика проведения контроля аналогична методике контроля с использованием проникающей жидкости. На поверхность очищенного изделия наносят жидкость, которая состоит из воды, смачивающего вещества и веществ, обеспечивающих слабую электропроводность. После просушивания поверхность опыляют порошком, частицы которого несут электрические заряды. При этом в жидкости, оставшейся в дефекте, происходит направленное перемещение ионов: если частицы порошка имеют положительный заряд, то отрицательные ионы жидкости будут перемещаться к вершине дефекта, а положительные ионы – к основанию дефекта. Далее напыленный порошок удаляют с поверхности изделия; при этом за счет кулоновского притяжения между положительными частицами порошка и отрицательными ионами жидкости образуется видимое изображение дефекта.

Электроискровой метод контроля основан на электроизоляционных свойствах полимерных материалов. Если изделие из пластмасс поместить в пространство между электродами, к которым приложена большая разность потенциалов (15-20 кВ), то в области дефекта в сварном соединении проскакивает искра, которая на приборе отображает дефектный участок в виде непроваров, трещин, пор. Этот метод применяется для контроля швов в сварных соединениях тонких полимерных пленок.

Читать еще:  Как спаять шов на линолеуме?

Электролитный метод, как и электроискровой, основан на электроизоляционных свойствах полимерных материалов. Сварное изделие помещают в ванну с электролитом (3%-й раствор поваренной соли) или электролит наносят на поверхность изделия. Наличие дефекта в сварном соединении обнаруживается по отклонению стрелки гальванометра при приложении на изделие электродов.

Тепловой метод контроля основан на изменении распределения теплового излучения, испускаемого исследуемым изделием, при наличии в нем дефекта. Он применяется для контроля листовых сварных соединений из полимерных материалов после снятия грата. Метод позволяет определить форму, размеры и места расположения больших дефектов типа нарушения сплошности. Схема контроля проста. С одной стороны изделия размещают источник нагрева – плазмотрон, лазер и др., а с другой – приемную аппаратуру повышенной чувствительности. Такая аппаратура дает возможность представить картину распределения теплового излучения по поверхности изделия в виде изображения на экране электронно-лучевой трубки или на фотобумаге; при этом выявляются дефекты.

Оптические методы контроля основаны на регистрации светового (видимого) или инфракрасного излучения, отраженного контролируемым изделием или прошедшего через него.

В заключение следует отметить, что комплексное применение рассмотренных методов контроля обеспечивает выявление возможных дефектов соединений и тем самым гарантирует безотказную работу сварных соединений из пластмасс, выполненных различными методами сварки.

Капиллярные методы неразрушающего контроля

Методы капиллярного контроля основаны на проникновении жидкости в полости дефектов и адсорбировании или диффузии ее из дефектов. При этом наблюдается разница в цвете или свечении между фоном и участком поверхности над дефектом. Капиллярные методы применяют для определения поверхностных дефектов в виде трещин, пор, волосовин и других нарушений сплошности на поверхности деталей.

К капиллярным методам дефектоскопии относится люминесцентный метод и метод красок.

При люминесцентном методе очищенные от загрязнений исследуемые поверхности покрываются с помощью распылителя или кисти флюоресцирующей жидкостью. В качестве таких жидкостей могут быть: керосин (90 %) с автолом (10 %); керосин (85 %) с трансформаторным маслом (15 %); керосин (55 %) с машинным маслом (25 %) и бензином (20 %).

Излишки жидкости удаляют обтирая контролируемые участки ветошью, смоченной в бензине. Чтобы ускорить выход флюоресцирующих жидкостей, находящихся в полости дефекта, поверхность детали опыляют порошком, обладающим адсорбирующими свойствами. Через 3—10 мин после опыления контролируемый участок освещают ультрафиолетовым светом. Поверхностные дефекты, в которые прошла люминесцирующая жидкость, становятся хорошо видимыми по яркому темно-зеленому или зелено-голубому свечению. Метод позволяет обнаружить трещины шириной до 0,01 мм.

При контроле методом красок сварной шов предварительно очищают и обезжиривают. На очищенную поверхность сварного соединения наносят раствор красителя. В качестве проникающей жидкости с хорошей смачиваемостью применяют красные краски следующего состава:

1.Бензол95%
Трансформаторное масло5%
Краситель (Сузан IV)10 г/л смеси
2.Топливо Т-1 (ТС-1)80%
Бензол20%
Краситель (Сузан IV)10 г/л смеси

Жидкость наносят на поверхность пульверизатором или кистью. Время пропитки — 10—20 мин. По истечении этого времени лишнюю жидкость стирают с поверхности контролируемого участка шва ветошью, смоченной в бензине.

После полного испарения бензина с поверхности детали на нее наносят тонкий слой белой проявляющей смеси. Белую проявляющую краску приготовляют из коллодия на ацетоне (60 %), бензола (40 %) и густотертых цинковых белил (50 г/л смеси). Через 15—20 мин на белом фоне в местах расположения дефектов появляются характерные яркие полоски или пятна. Трещины обнаруживаются как тонкие линии, степень яркости которых зависит от глубины этих трещин. Поры появляются в виде точек различной величины, а межкристаллическая коррозия в виде тонкой сетки. Очень мелкие дефекты наблюдают под лупой 4—10-кратного увеличения. По окончании контроля белую краску удаляют о поверхности, протирая деталь ветошью, смоченной в ацетоне.

Капиллярная дефектоскопия

Содержание

  • Метод капиллярной дефектоскопии
  • Суть метода
  • Что необходимо иметь для проведения таких работ?
  • Как протекает процесс?
  • Плюсы и минусы капиллярного контроля
  • Где используется метод капиллярной дефектоскопии?

Метод капиллярной дефектоскопии

Для выявления наружных дефектов сварных швов (непроваров, пор, раковин, следов коррозии и пр.) и исследования прилегающих к ним зон, применяется метод капиллярной дефектоскопии. Но если изделие изготовлено из ферромагнитных материалов, то помимо этого способа может быть использован другой, обладающий высокой чувствительностью даже к самым мелким трещинам, а называется он магнитопорошковая дефектоскопия сварных швов.

Что касается капиллярного контроля, то этот метод исследования применим не только в чёрной металлургии, но и в других отраслях промышленности, ведь его можно использовать для проверки качества швов пластмасс, керамики, сплавов цветных металлов и других материалов. Для этих целей потребуется комплект специального оборудования и особые химические вещества. Всё это и многое другое можно приобрести на официальном сайте компании «ПромГруппПрибор», являющейся производителем и продавцом приборов неразрушающего контроля.

Суть метода

Капиллярная дефектоскопия для выявления дефектов подразумевает использование индикаторных жидкостей (пенетрантов), которые на капиллярном уровне проникают в имеющиеся полости, причём, это возможно даже тогда, когда при внешнем осмотре их обнаружить не удалось. Трещины, заполненные пенетрантом, можно выявить визуально, либо при участии преобразователя. Порядок проведения капиллярного контроля регламентируется ГОСТ 18442-80.

Что необходимо иметь для проведения таких работ?

Все заинтересованные лица набор капиллярной дефектоскопии купить могут, минуя розничные торговые сети, ведь покупка товаров в режиме онлайн теперь считается самым лучшим способом приобретения, а цена приборов и средств контроля приятно порадует всех, кто решил прибегнуть к услугам интернет-магазина компании «ПромГруппПрибор».

Как протекает процесс?

Капиллярный контроль проходит постадийно:

  1. Подготовительный этап. Поверхность сварного шва, подлежащая контролю, тщательно очищается от разного рода загрязнений, которые могут быть удалены механическим или химическим способом. В большинстве случаев, применима комплексная очистка, по окончании которой следует позаботиться о том, чтобы на объекте не осталось химических реагентов, ведь они могут повлиять на точность результатов. Хорошо подготовленная поверхность требует просушки.
  2. Нанесение индикаторной жидкости. Обычно, пенетрант имеет красный цвет, что делает его максимально заметным. Температура обрабатываемой поверхности не должна быть менее 5 и более 50 градусов по Цельсию. Индикаторная жидкость может быть нанесена несколькими способами. Если есть возможность, то исследуемый объект погружается в специальную ванну, но, как правило, такой возможности нет, поэтому пенетрант наносится при помощи пульверизатора. В самом крайнем случае – кистью. Главное, обеспечить объекту хорошую пропитку и покрытие индикационной жидкостью. Кстати, пенетранты последнего поколения реализуются в аэрозольных баллонах, что существенно упрощает и ускоряет процесс их нанесения.
  3. Промежуточная очистка. Данная процедура проводится с целью удаления излишков пенетранта. Для этих целей сначала используется обыкновенная салфетка или тряпка, смоченная растворителем, применяемым для предварительной очистки. В процессе нельзя механически воздействовать на поверхность, подлежащую контролю, поэтому подобные работы проводятся очень аккуратно. То есть, дефектная полость должна быть заполнена пенетрантом и удалять его оттуда нельзя до окончания проведения исследований. После проведения промежуточной очистки поверхность должна быть абсолютно сухой.
  4. Нанесение проявителя. Такая операция проводится сразу после полного высыхания поверхности. Проявитель наносится тонким слоем и спустя некоторое время он за счёт капиллярных сил начинает адсорбировать на своей поверхности пенетрант, образуя тем самым яркое индикаторное изображение.
  5. Выявление дефектов. Как только закончится процесс проявки, можно приступать к осмотру контролируемой поверхности. Весь контроль сводится к выявлению и регистрации индикаторных следов. Интенсивно окрашенные зоны сигнализируют о глубине и ширине дефекта, а бледная окраска говорит о наличии незначительных изъянов на поверхности сварного шва трубопровода или другого объекта. Для облегчения проведения исследований рекомендуется использовать увеличительные стёкла. После окончания всех необходимых мероприятий, проявитель подлежит удалению с поверхности, а делается это при помощи растворителя.
  6. Повторный контроль. Проводится в том случае, если созданные условия не поспособствовали выявлению дефектов или была нарушена технология. Вторичная капиллярная дефектоскопия сварных швов осуществляется с использованием тех же реагентов, которые были задействованы при первом исследовании. Следует позаботиться о том, чтобы следы первичного контроля были тщательно ликвидированы. Что касается алгоритма действий, то он аналогичен.
Читать еще:  Чем измеряют катет сварочного шва?

Плюсы и минусы капиллярного контроля

К положительным сторонам данного метода исследования можно отнести:

  1. Простоту операций.
  2. Доступность оборудования и материалов.
  3. Широкий спектр применения.
  4. Возможность обнаружения сквозных и поверхностных дефектов, а также получение информации, касающейся их расположения, размеров, глубины и форм.
  1. Большое количество времени, затрачиваемое на проведение всех манипуляций (около двух часов).
  2. Невозможность полной автоматизации процесса, следовательно, высокая его трудоёмкость.
  3. Если исследования проводятся при отрицательных температурах, то результаты его не отличаются большой точностью.
  4. Когда планируется проведение исследованием методом «капиллярная дефектоскопия», материалы купить – не такая уж и большая проблема. Проблема в том, что они имеют ограниченный срок хранения, и при истечении срока годности не могут быть применены.

Где используется метод капиллярной дефектоскопии?

Данный способ контроля применим для выявления дефектов на поверхности изделий, изготовленных практически из любых материалов, причём, металлургия, строительство и ЖКХ – это не единственные сферы, где уместно прибегать к таким методам исследований. Машиностроение, судостроение, авиационная промышленность, производство продукции – капиллярная дефектоскопия востребована и в этих отраслях, и зачастую, она бывает единственно возможным методом выявления дефектов.

Стоит отметить, что этот способ исследования может быть использован и для изделий, изготовленных из ферромагнитных составов, но не всегда, ведь особенности эксплуатации таких объектов не позволяют контроллёру провести комплекс необходимых мероприятий. А всё потому, что дефективная полость не должна быть чем-то заполнена или иметь загрязнения, что не всегда возможно технически.

Дефектоскопия сварных соединений

Окончание сварных работ – это начало контроля качества сварных соединений. Ведь понятно, что от качества проведенных работ зависит долгосрочная эксплуатация сборной конструкции. Дефектоскопия сварных швов – это методы контроля сварных соединений. Их несколько, поэтому стоит разобраться в теме досконально.

Виды контроля сварных соединений

Существует видимые дефекты сварочного шва и невидимые (скрытые). Первые легко можно увидеть глазами, некоторые из них не очень большие, но при помощи лупы обнаружить их не проблема. Вторая группа более обширная, и располагаются такие дефекты внутри тела сварного шва.

Обнаружить скрытые дефекты можно двумя способами. Способ первый – неразрушающий. Второй – разрушающий. Первый вариант, по понятным причинам, используется чаще всего.

Неразрушающий способ контроля качества сварных швов В этой категории несколько способов, использующихся для проверки качества сварных швов.

  • Визуальный осмотр (внешний).
  • Магнитный контроль.
  • Дефектоскопия радиационная.
  • Ультразвуковая.
  • Капиллярная.
  • Контроль сварных соединений на проницаемость.

Есть и другие способы, но используются они нечасто.

Визуальный осмотр

С помощью внешнего осмотра можно выявить не только видимые дефекты швов, но и невидимые. К примеру, неравномерность шва по высоте и ширине говорит о том, что в процессе сварки были прерывания дуги. А это гарантия, что шов внутри имеет непровары.

Как правильно проводится осмотр.

  • Шов очищается от окалин, шлака и капель металла.
  • Затем его обрабатывают техническим спиртом.
  • После еще одна обработка десятипроцентным раствором азотной кислоты. Она называется травление.
  • Поверхность шва получается чистой и матовой. На ней хорошо видны самые мелкие трещинки и поры.

Внимание! Азотная кислота – материал, разъедающий металл. Поэтому после осмотра металлический сварной шов надо обработать спиртом.

О лупе уже упоминалось. С помощью этого инструмента можно обнаружить мизерные изъяны в виде тонких трещин толщиною меньше волоса, пережоги, мелкие подрезы и прочие. К тому же при помощи лупы можно проконтролировать – растет ли трещина или нет.

При осмотре можно также пользоваться штангенциркулем, шаблонами, линейкой. Ими замеряют высоту и ширину шва, его ровное продольное месторасположение.

Магнитный контроль сварных швов

Магнитные методы дефектоскопии основаны на создании магнитного поля, которое пронизывает тело сварного шва. Для этого используется специальный аппарат, в принцип работы которого вложено явления электромагнетизма.

Есть два способа, как определить дефект внутри соединения.

  1. С использованием ферромагнитного порошка, обычно это железо. Его можно использовать как в сухом виде, так и во влажном. Во втором случае железный порошок смешивают с маслом или керосином. Его посыпают на шов, а с другой стороны устанавливают магнит. В местах, где есть дефекты, порошок будет собираться.
  2. С помощью ферромагнитной ленты. Ее укладывают на шов, а с другой стороны устанавливают прибор. Все дефекты, которые оказываются в стыке двух металлических заготовок, будут отображаться на этой пленке.

Этот вариант дефектоскопии сварных соединений можно использовать для контроля только ферромагнитных стыков. Цветные металлы, стали с хромникелевым покрытием и другие таким способом не контролируются.

Радиационный контроль

Это, по сути, рентгеноскопия. Здесь используются дорогие приборы, да и гамма-излучение вредно для человека. Хотя это самый верный вариант обнаружения дефектов в сварочном шве. Они четко видны на пленке.

Ультразвуковая дефектоскопия

Это еще один точный вариант обнаружения изъянов в сварочном шве. В его основе лежит свойство ультразвуковых волн отражаться от поверхности материалов или сред с разными плотностями. Если сварной шов не имеет внутри себя дефектов, то есть, его плотность однородна, то звуковые волны пройдут сквозь него без помех. Если внутри дефекты есть, а это полости, наполненные газом, то внутри получаются две разные среды: металл и газ.

Поэтому ультразвук будет отражаться от металлической плоскости поры или трещины, и вернется обратно, отображаясь на датчике. Необходимо отметить, что разные изъяны отражают волны по-разному. Поэтому можно итог дефектоскопии классифицировать.

Это самый удобный и быстрый способ контроля сварных соединений трубопроводов, сосудов и других конструкций. Единственный у него минус – сложность расшифровки полученных сигналов, поэтому с такими приборами работают только высококвалифицированные специалисты.

Капиллярный контроль

Методы контроля сварных швов капиллярным способом основаны на свойствах некоторых жидкостей проникать в тело материалов по самым мельчайшим трещинкам и порам, структурным каналам (капиллярам). Самое главное, что этим способом можно контролировать любые материалы, разной плотности, размеров и формы. Неважно, это металл (черный или цветной), пластик, стекло, керамика и так далее.

Проникающие жидкости просачиваются в любые изъяны поверхности, а некоторые из них, к примеру, керосин, могут проходить сквозь достаточно толстые изделия насквозь. И самое главное, чем меньше размер дефекта и выше впитываемость жидкости, тем быстрее протекает процесс обнаружения изъяна, тем глубже жидкость проникает.

Сегодня специалисты пользуются несколькими видами проникающих жидкостей.

Пенетранты

С английского это слово переводится, как впитывающий. В настоящее время существует более десятка составов пенетрантов (водные или на основе органических жидкостей: керосин, масла и так далее). Все они обладают малым поверхностным натяжением и сильной цветовой контрастностью, что позволяет их легко увидеть. То есть, суть метода такова: наносится пенетрант на поверхность сварочного шва, он проникает внутрь, если есть дефект, окрашивается с этой же стороны после очистки нанесенного слоя.

Сегодня производители предлагают разные проникающие жидкости с разным эффектом обнаружения изъяном.

  • Люминесцентные. Из названия понятно, что в их состав входят люминесцентные добавки. После нанесения такой жидкости на шов нужно посветить на стык ультрафиолетовой лампой. Если дефект есть, то люминесцентные вещества будут отсвечивать, и это будет видно.
  • Цветные. В состав жидкостей входят специальные светящиеся красители. Чаще всего это красители ярко-красные. Они хорошо видны даже при дневном свете. Наносите такую жидкость на шов, и если с другой стороны появились красные пятнышки, то дефект обнаружен.
Читать еще:  Как правильно варить операционный шов на трубе?

Есть разделение пенетрантов по чувствительности. Первый класс – это жидкости, с помощью которых можно определить дефекты с поперечным размером от 0,1 до 1,0 микрона. Второй класс – до 0,5 микрон. При этом учитывается, что глубина изъяна должна превосходить его ширину в десять раз.

Наносить пенетранты можно любым способом, сегодня предлагаются баллончики с этой жидкостью. В комплект к ним прилагаются очистители для зачистки дефектуемой поверхности и проявитель, с помощью которого выявляется проникновение пенетранта и показывается рисунок.

Как это надо делать правильно.

  • Шов и околошовные участки необходимо хорошо очистить. Нельзя использовать механические методы, они могут стать причиной занесения грязи в сами трещины и поры. Используют теплую воду или мыльный раствор, последний этап – очистка очистителем.
  • Иногда появляется необходимость протравить поверхность шва. Главное после этого кислоту убрать.
  • Вся поверхность высушивается.
  • Если контроль качества сварных соединений металлоконструкций или трубопроводов проводится при минусовой температуре, то сам шов перед нанесением пенетрантов надо обработать этиловым спиртом.
  • Наносится впитывающая жидкость, которую через 5-20 минут надо удалить.
  • После чего наносится проявитель (индикатор), который из дефектов сварного шва вытягивает пенетрант. Если дефект небольшой, то придется вооружиться лупой. Если никаких изменений на поверхности шва нет, то и дефектов нет.

Керосин

Этот способ можно обозначить, как самый простой и дешевый, но от этого эффективность его не снижается. Его проводят по этой технологии.

  • Очищают стык двух металлических заготовок от грязи и ржавчины с двух сторон шва.
  • С одной стороны на шов наносится меловой раствор (400 г на 1 л воды). Необходимо дождаться, чтобы нанесенный слой просох.
  • С обратной стороны наносится керосин. Смачивать надо обильно в несколько подходов в течение 15 минут.
  • Теперь нужно наблюдать за стороной, где был нанесен меловой раствор. Если появились темные рисунки (пятна, линии), то значит, в сварочном шве присутствует дефект. Эти рисунки со временем будут только расширяться. Здесь важно точно определить места выхода керосина, поэтому после первого нанесения его на шов, нужно сразу проводить наблюдение. Кстати, точки и мелкие пятнышки будут говорить о наличие свищей, линии – о наличии трещин. Очень эффективен этот метод при стыковочных вариантах соединение, к примеру, труба к трубе. При сварке металлов, уложенных внахлест, он менее эффективен.

Методы контроля качества сварных соединений на проницаемость

В основном этот способ контроля используется для емкостей и резервуаров, которые изготовлены методом сварки. Для этого можно использовать газы или жидкости, которыми заполняется сосуд. После чего внутри создается избыточное давление, выталкивающее материалы наружу.

И если в местах сварки емкостей есть дефекты, то жидкость или газ тут же начнут через них проходить. В зависимости от того, какой контрольный компонент используется в проверочном процессе, различаются четыре варианта: гидравлический, пневматический, пневмогидравлический и вакуумный. В первом случае используется жидкость, во втором газ (даже воздух), третий – комбинированный. И четвертый – это создание внутри емкости вакуума, который через дефектные швы будет втягивать внутрь резервуара окрашивающие вещества, наносимые на внешнюю сторону шва.

При пневматическом способе внутрь сосуда закачивается газ, давление которого превышает номинальный в 1,5 раза. С внешней стороны на шов наносится мыльный раствор. Пузырьки покажут наличие дефектов. При гидравлической дефектоскопии в сосуд заливается жидкость под давлением в 1,5 раза превышающее рабочее, производится обстукивание околошовного участка. Появление жидкости говорит о наличии изъяна.

Вот такие варианты дефектоскопии трубопроводов, резервуаров и металлоконструкций сегодня используют для определения качества сварного шва. Некоторые из них достаточно сложные и дорогие. Но основные просты, поэтому и часто используемые.

Капиллярный контроль

Неразрушающий контроль, в том числе капиллярный метод, – это эффективное, а в ряде случаев единственно возможное средство предотвращения аварийных ситуаций в объектах повышенной опасности. Задача ученых, инженеров-конструкторов, инженеров-технологов – разработать аппаратуру и технологию контроля, которая давала бы возможность дефектоскописту определить только пригодные к эксплуатации детали и не пропустить дефектные.

Дефектоскопист – последняя инстанция, которая может предотвратить аварию, отказ, непредвиденную остановку машины или механизма. Особая ответственность лежит на дефектоскопистах, контролирующих детали авиационной и космической техники, локомотивов и вагонов; оборудования атомных, энергетических и химических производств, представляющих огромную опасность не только для человека, но и окружающей среды.

Во всем мире неразрушающий контроль качества и техническая диагностика – это целая индустрия, неотъемлемая часть производства и эксплуатации всех технических устройств: сотни тысяч специалистов ежедневно обеспечивают отбраковку некачественных деталей при производстве (качество) и своевременное обнаружение опасных трещин на работающих технических устройствах (диагностика), прежде всего опасных для жизни, здоровья людей и окружающей среды (безопасность).

Уровень развития передовых стран мира на современном этапе характеризуется не столько высоким объемом производства и ассортиментом выпускаемой продукции, сколько показателями качества, надежности и безопасности.

В высокоразвитых странах затраты на контроль качества составляют в среднем 1 – 3 % от стоимости выпускаемой продукции, а в таких отраслях промышленности, как оборонная, атомная, а так-же аэрокосмическая, затраты на контроль качества возрастают до 12 – 18 %. Трудозатраты на контроль сварных соединений в строительстве трубопроводов большого диаметра и большой протяженности достигают 10 %. Во всем мире давно поняли, что экономия на контроле – это мнимая экономия, которая в конечном итоге оборачивается огромными затратами на преодоление последствий аварий и катастроф.

На стадии изготовления необходима объективная информация о свойствах детали, которая даёт возможность судить о качестве детали, её пригодности к работе и конкурентоспособности изделия в целом.

Использование средств неразрушающего контроля в процессе эксплуатации позволяет диагностировать техническое состояние объекта, определить его остаточный ресурс, сроки дальнейшей безопасной эксплуатации. Диагностика особенно актуальна для таких потенциально опасных технических объектов, как оборудование магистральных нефте- и газопроводов, химических и нефтеперерабатывающих производств, сосудов под давлением, подъемно-транспортных устройств и др., особенно если принять во внимание, что среди них многие уже выработали свой ресурс.

Суждение о работоспособности и качестве достигается через выявление с помощью приборов неразрушающего контроля и технической диагностики:

  • поверхностных и внутренних дефектов сплошности материала, деталей и элементов конструкций (трещин, раковин, пор, расслоений и т.п.);
  • недопустимых изменений структуры материала и физико-механических свойств (размер зерна, плотность, упругие и прочностные характеристики, твердость, внутренние напряжения, влажность и др.);
  • отклонений геометрических параметров (толщин покрытий, поверхностно упрочненных слоев, толщин стенок деталей и элементов конструкций и др.);
  • внутреннего строения объектов (интроскопия).

Капиллярная дефектоскопия является старейшим методом неразрушающего контроля и самым чувствительным методом неразрушающего контроля поверхностных дефектов. Капиллярный метод позволяет выявить поверхностные трещины раскрытием 0,5 – 1 мкм и более. Он основан на проникновении в поверхностные дефекты специальных жидкостей, благодаря которым повышается свето- и цветоконтрастность дефектного участка относительно неповрежденного участка поверхности детали. Достоинством метода является то, что точно фиксируется местоположение дефекта, его ориентация и размеры. Его эффективность в большой степени зависит от правильности соблюдения технологических режимов всех стадий, которые определяются физико-химическими процессами, протекающими при проведении контроля.

Наиболее эффективен капиллярный метод для неразрушающего контроля больших площадей, особенно со сложной геометрией и в случаях массовых производств. Технологов прельщает возможностью обнаружить дефект на ранних стадиях изготовления, а также на всех стадиях технологического процесса изготовления. Технология капиллярной дефектоскопии сравнительно проста и не требует сложного дорогостоящего оборудования.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector