29 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Качество сварного шва по внешнему виду

Большая Энциклопедия Нефти и Газа

Внешний вид — сварные шв

Внешний вид сварных швов должен удовлетворять следующим требованиям. [2]

Внешний вид сварных швов , выполненных контактной сваркой, должен удовлетворять следующим требованиям: для труб с толщиной стенки до 10 мм по окружности стыка должно быть равномерное усиление высотой от 3 до 5 мм, для труб с толщиной стенки выше 10 мм усиление должно быть от 4 до 6 мм. [3]

Внешний вид сварных швов должен удовлетворять следующим требованиям: форма и размеры шва должны соответствовать ГОСТ 16037 — 80; поверхность шва должна быть мелкочешуйчатой; ноздреватость, пористость, грубая чешуйчатость не допускаются; переход от наплавленного металла к основному должен быть плавным; на швах не должно оставаться кратеров. [4]

Внешний вид сварных швов , выполненных дуговой сваркой, должен удовлетворять следующим требованиям, Поверхность швов должна быть слегка выпуклой и гладкой ( при ручной сварке — мелкочешуйчатой); ноздреватость, пористость, грубая чешуйчатость не допускаются. Переход от наплавленного металла к основному должен быть плавным. Швы не должны иметь трещин, прожогов, кратеров и подрезов глубиной более 0 5 мм. [5]

Следует обращать внимание на внешний вид сварных швов соединений из низколегированной стали: швы должны быть мелкочешуйчатыми, без резких переходов к основному металлу; кратеры тщательно заварены; не должно быть поверхностных включений и нежелательно наличие подрезов даже в пределах допустимых норм. [6]

После сварки контролируют геометрические размеры изделия, размеры и внешний вид сварных швов . В соответствии с требованиями технических условий на изделие сварные швы контролируют проникающим излучением или ультразвуком ( см. гл. Все сосуды, работающие под давлением, проверяют на прочность гидравлическими испытаниями при давлении, превышающем рабочее. [7]

В заключение следует отметить, что от формирующей способности флюса зависит не только внешний вид сварных швов , но и количество дефектов в них. Действительно, изменение формы шва в поперечном сечении означает соответствующее изменение направления роста столбчатых кристаллитов и их расположение относительно сил, воздействующих на кристаллизующийся шов. [9]

Необходимо соблюдать величины зазоров в стыках сварных соединений, следить за правильной стыковкой соседних лепестков, проверять внешний вид сварных швов и наличие подрезов, непроваров, трещин и других наружных дефектов, проводить механические испытания сварных соединений и их просвечивание радиоактивными препаратами. Строгое соблюдение принятой технологии сварки, высокое качество присадочных материалов и флюсов вместе с пооперационными методами контроля позволяют получить гарантированное высокое качество сварных швов. [11]

Особенно эффективно использование этого процесса сварки, когда к внешнему виду сварных швов предъявляются повышенные требования. Проволока рутил-флюоритного типа ( ПП-АН4, ПП-АН9, ПП-АН20, ПП-АН22, ПП-АН54) рекомендуется для сварки конструкций, работающих в сложных климатических условиях, при отрицательных температурах, динамических и знакопеременных нагрузках. Сварочные работы желательно выполнять в закрытых помещениях; сварка на открытых площадках возможна при соблюдении мер, предотвращающих сдувание защитного газа. При сварке плавящимся электродом вылетом электрода называют расстояние от конца электродной проволоки до среза токоподводящего мундштука. [12]

Современная техника позволяет получать с помощью электродуговой сварки сварные швы, не уступающие по своей прочности основному металлу. При сварке под флюсом или качественными электродами можно получать сварные швы, не имеющие никаких дефектов. Однако по целому ряду причин в сварных швах встречаются дефекты, снижающие прочность и портящие внешний вид сварных швов и соединений. [13]

Признаком правильного нагрева свариваемых частей и присадочного прутка служит появление влажного блеска на их поверхности. При этом происходит размягчение тонкого поверхностного слоя до вяькотекучего состояния. При надавливании прутка разогретые слои слипаются и частично выдавливаются по сторонам, а пруток образует своего рода валик. Последовательно, укладывая валики-прутки, заполняют шов до требуемого сечения. На рис. 147 приведены виды заполнения швов, а на рис. 148 — внешний вид сварных швов . [15]

Качество сварного шва по внешнему виду

Вопрос 1. Классификация сварных швов.
Часть сварного соединения, образовавшуюся в результате плавления кромок свариваемых металлов и электрода и непосредственно осуществляющую связь свариваемых частей, называют сварным швом.
Сварные швы классифицируют по:
• типу соединения;
• числу слоев, протяженности;
• расположению в пространстве;
• отношению к действующим усилиям (рис. 8).

По типу соединения швы делятся на стыковые и угловые.
Стыковые швы применяются при соединении частей металла встык, угловые — при выполнении тавровых, угловых и нахлесточных соединений.
Швы делятся на однослойные и многослойные. Однослойный шов выполняется за один проход, многослойный — за два прохода и более.
По протяженности сварные швы бывают непрерывные и прерывистые. Прерывистые характеризуются шагом шва.
По расположению в пространстве швы разделяют на нижние, вертикальные, горизонтальные и потолочные.
По отношению к действующим усилиям швы делятся на лобовые, фланговые, косые и комбинированные.

Вопрос 2. Контроль качества сварных швов (назначение, виды).
Внешний осмотр и обмеры сварных швов – наиболее простые и широко распространенные способы контроля их качества. Они являются первыми контрольными операциями по приемке готового сварного узла или изделия. Этим видам контроля подвергают все сварные швы независимо от того, как они будут испытаны в дальнейшем.
С помощью внешнего осмотра сварных швов выявляют наружные дефекты: непровары, наплывы, прожоги, подрезы, наружные трещины и поры, смещение свариваемых кромок деталей и т. п. Визуальный осмотр производят как невооруженным глазом, так и с применением лупы с увеличением до 10 раз.
Приступая к осмотру, сварной шов и прилегающую к нему поверхность основного металла на ширину не менее 20 мм по обе стороны шва очищают от шлака, брызг расплавленного металла, окалины и других загрязнений, которые могут затруднить проведение осмотра. Осматривать швы необходимо по всей их протяженности, а в случае недоступности – обязательно с двух сторон.
По результатам внешнего осмотра можно судить о местах расположения и характере внутренних дефектов. Например, подрез на одной из сторон шва и наплыв на другой указывают на возможный непровар по кромке. Непостоянная ширина шва часто является следствием неравномерной ширины зазора. В местах с малым зазором могут образоваться непровары, а с большим — прожоги. Перекосы и смещения кромок, а также большая высота шва могут быть причиной непроваров.
Обмеры сварных швов позволяют судить о качестве сварного соединения: недостаточное сечение шва уменьшает его прочность, слишком большое – увеличивает внутренние напряжения и деформации. Размеры сечения готового шва проверяют по его элементам в зависимости от типа соединения. У стыкового шва проверяют его ширину, высоту выпуклости и размер обратной подварки корня, в угловом шве (нахлесточное и тавровое соединения) измеряют катет. Замеренные величины должны соответствовать ТУ или ГОСТам. Размеры сварного шва контролируют обычными измерительными инструментами или специальными шаблонами. Набор шаблонов и его применение для контроля стыковых и угловых швов показаны на рис. 9. Каждый щуп набора представляет собой пластину с вырезами под определенный шов.
Внешний осмотр и обмеры сварного шва не дают возможности окончательно судить о качестве сварки. Они устанавливают только внешние дефекты шва и позволяют определить его сомнительные участки, которые могут быть проверены более точными способами.

Контроль непроницаемости сварных швов и соединений.
Сварные швы и соединения ряда изделий и сооружений должны отвечать требованиям непроницаемости для различных жидкостей и газов. Это объясняется тем, что неплотности в швах снижают их прочность, уменьшают коррозионную стойкость, вызывают потерю хранимых и транспортируемых продуктов и создают ненормальные условия эксплуатации сварных конструкций. Учитывая это, во многих сварных конструкциях (резервуары, газгольдеры, трубопроводы, холодильная и вакуумная аппаратура и т. д.) сварные швы подвергают контролю на непроницаемость. Этот вид контроля производится после окончательного монтажа сварной конструкции. Дефекты, выявленные внешним осмотром (трещины, крупные видимые поры и др.), устраняются до начала испытаний. Непроницаемость сварных швов контролируют керосином, аммиаком, воздушным или гидравлическим давлением, вакуумированием или газоэлектрическими течеискателями.
Контроль керосином основан на физическом явлении капиллярности, которое заключается в способности многих жидкостей, а в первую очередь керосина, подниматься по капиллярным трубкам. Такими капиллярными трубками в сварных швах являются сквозные поры и трещины. В процессе испытания сварные швы покрывают водным раствором мела (350-450 г молотого мела на 1 л воды) или каолина с той стороны, которая более доступна для осмотра и выявления дефектов. После высыхания покрытой поверхности обратная сторона шва обильно смачивается керосином. Неплотности швов выявляют появлением жирных желтых точек или полосок керосина на меловом или каолиновом покрытии. Появление отдельных точек указывает на наличие пор и свищей, а полосок — сквозных трещин или непроваров.
Контроль аммиаком основан на изменении окраски некоторых индикаторов (спиртоводного раствора фенолфталеина или водного раствора азотнокислой ртути) под воздействием щелочей. В качестве щелочи применяется газ аммиак.
В процессе испытаний на одну сторону шва укладывают бумажную ленту или светлую ткань, пропитанную 5%-ным раствором азотно-кислой ртути, а с другой стороны обрабатывают шов смесью аммиака с воздухом под давлением.
Аммиак, проникая через неплотности сварного шва, окрашивает пропитанную индикатором бумагу или ткань в серебристо-черный цвет. При использовании в качестве индикатора спиртоводного раствора фенолфталеина его тонкой струей льют на контролируемый шов. Если в шве имеются неплотности, аммиак проходит через них и окрашивает индикатор в ярко-красный с фиолетовым оттенком цвет.
Контролю воздушным давлением (сжатым воздухом или другими газами) подвергают сосуды и трубопроводы, работающие под давлением.
Это испытание проводят с целью контроля общей непроницаемости сварного изделия.
Малогабаритные сварные изделия полностью герметизируют газонепроницаемыми заглушками и погружают в ванну с водой с таким расчетом, чтобы над изделием был слой воды в 20-40 мм. После этого в изделие через редуктор от воздушной сети или из баллона подают сжатый газ (воздух, азот, инертные газы) под давлением, на 10-20% превышающим рабочее.
Крупногабаритные сварные конструкции, которые не могут быть помещены в воду, испытывают следующим образом. Их герметизируют и создают в них испытательное давление. После этого сварные швы промазывают пенным индикатором (обычным водным раствором мыла), который пузырится в местах неплотностей.
При испытании сжатыми газами следует соблюдать правила безопасности труда: сварные сосуды необходимо испытывать в изолированном помещении с ограждениями на случай взрыва; трубопроводы испытывают отдельными изолированными участками с предупредительными знаками об опасности.
Контроль гидравлическим давлением применяют при проверке прочности и плотности различных сосудов, котлов, паро-, водо-, газопроводов и других сварных конструкций, работающих под избыточным давлением. Перед испытанием сварное изделие полностью герметизируют водонепроницаемыми заглушками. Сварные швы с наружной стороны тщательно обтирают ветошью или обдувают сжатым воздухом до получения сухой поверхности.
После полного заполнения изделия водой с помощью насоса или гидравлического пресса создают испытательное давление (обычно в 1,5-2 раза больше рабочего). Дефектные места определяют по появлению течи, просачиванию воды в виде капель, запотеванию на поверхности шва или вблизи него.
Это наиболее распространенные виды контроля качества сварных швов.
Но существует еще ультразвуковой, радиационный контроль качества сварного шва.
Сущность радиационного контроля основана на свойстве рентгеновских лучей проникать через металлические тела. После обработки рентгеновской пленки дефекты шва приобретают вид темных полос, пятен или черточек.

Читать еще:  Технология контроля качества сварных швов

3. Задача. Объясните, почему для сварки ответственных конструкций преимущественно применяют источник постоянного тока.
Применение выпрямителя обеспечивает устойчивое горение электрической дуги. Это позволяет равномерно прогревать металл по всей длине шва, а также дает возможность контролировать количество тепла, поступаемого в металл при сварке за счет ранее установленной полярности дуги на источнике питания.

Контроль качества сварных швов и соединений

Проверку качества сварных швов и соединений в строительных металлических конструкциях проводят в соответствии с требованиями строительных норм и правил . Методы контроля, применяемые при сварке: визуальный (внешний осмотр и обмер); металлографический и химический анализ; механические испытания сварных соединений; физические способы (без разрушения).

Внешнему осмотру подвергаются все типы сварных соединений при всех способах сварки, в результате выявляются следующие дефекты:

– излом и неперпендикулярность осей соединяемых элементов;

– отступления по размерам и форме швов от требований стандартов, технических условий и т.п.;

– смещение кромок соединяемых элементов;

– поверхностные трещины всех видов и направлений;

– наплывы, подрезы, прожоги, незаваренные кратеры, непровары, пористость, свищи, усадочные раковины, шлаковые и неметаллические включения, выходящие на поверхность.

Осмотр сварных швов производится по всей их протяженности с двух сторон невооруженным глазом при хорошем освещении, в отдельных случаях применяют лупу с десятикратным увеличением. Перед осмотром сварной шов и прилегающий к нему металл очищают от шлака и брызг.

Контроль размеров сварного шва и определение величины выявленных дефектов производится измерительным инструментом или специальными шаблонами.

По внешнему виду сварные швы должны удовлетворять следующим требованиям:

– иметь гладкую или мелкочешуйчатую поверхность (без наплывов, сужений, прожогов и перерывов) и плавный переход к основному металлу;

– наплавленный металл должен быть плотным по всей длине шва, не иметь трещин, скоплений и цепочек поверхностных пор (отдельно расположенные поры допускаются);

– подрезы основного металла, если в проекте нет дополнительных требований, допускают глубиной не более 0,5 мм при толщине свариваемого металла 4…10 мм и не более 1 мм при толщине свыше 10 мм;

– все кратеры должны быть заварены.

Металлографические исследования сварных швов стальных конструкций проводят чаще всего путем засверливания и последующего травления этих мест с целью определения качества провара и отсутствия внешних дефектов.

Химическим анализом сварных соединений (основного и наплавленного металлов) проверяют марки сталей и типы электродов, использованных для изготовления данной конструкции.

В результате механических испытаний сварных швов определяют основные прочностные характеристики при растяжении, ударную вязкость материала шва и соответствие их требованиям проекта и техническим условиям.

Испытания на статический изгиб (технологическая проба) проводят для стыковых сварных соединений (рис. 10.18). Эти испытания определяют квазистатическую вязкость сварного соединения, характеризующуюся углом загиба до образования первой трещины в растянутой зоне образца. Для хороших швов угол загиба α достигает 180о.

Физическим способам контроля качества шва подвергаются швы, принятые по внешнему виду и не имеющие внешних дефектов.

К наиболее часто используемым физическим способам контроля относятся ультразвуковая дефектоскопия, радиационный контроль с просвечиванием рентгеновскими лучами и гамма-лучами, магнитный метод.

Физические способы контроля предназначены для выявления в сварном шве и околошовной зоне внутренних и внешних дефектов, недоступных для внешнего осмотра.

Метод ультразвуковой дефектоскопии основан на том, что ультразвуковые колебания прямолинейно распространяются в металле и отражаются от границы раздела сред, имеющих различные акустические свойства.

Радиационный метод контроля с просвечиванием рентгеновскими или гамма-лучами основан на том, что проницаемость указанных лучей для различных материалов неодинаковая. Поэтому дефектные места шва (поры, трещины, непровары) пропускают такие лучи с меньшим поглощением, чем основной металл, благодаря чему такие участки выглядят как более яркие пятна на рентгеновской пленке или других запоминающих изображение слоях.

Рис. 10.18. Испытание металла шва на изгиб

Метод магнитной дефектоскопии основан на неодинаковой магнитной проницаемости αжелеза и других фаз. В отличие от равномерного распределения магнитных потоков на участке сварного соединения без дефектов в шве с дефектом магнитный силовой поток будет огибать его, создавая магнитные потоки рассеивания.

Выбор методов и объемов неразрушающего контроля качества сварных соединений осуществляется проектной организацией, которая указывает их в конструкторской документации, согласованной с заводом-изготовителем и монтажной организацией.

Поможем написать любую работу на аналогичную тему

Контроль качества сварных швов и соединений

Контроль качества сварных швов и соединений

СНиП 3.03.01-87. Несущие и ограждающие конструкции Часть 9

8.7. В случае необходимости выполнения сварки стальных конструкций при температуре воздуха ниже минус 30 °С сварщики должны предварительно сварить пробные стыковые образцы при температуре не выше указанной. При удовлетворительных результатах механических испытаний пробных образцов сварщик может быть допущен к работе при температуре воздуха на 10 °С ниже температуры сварки пробных образцов.

8.8. Свариваемые поверхности конструкции и рабочее место сварщика следует защищать от дождя, снега, ветра. При температуре окружающего воздуха ниже минус 10 °С необходимо иметь вблизи рабочего места сварщика инвентарное помещение для обогрева, при температуре ниже минус 40 °С — оборудовать тепляк.

8.9. Колебания напряжения питающей сети электрического тока, к которой подключено сварочное оборудование, не должны превышать ±5 % номинального значения. Оборудование для автоматизированной и ручной многопостовой сварки следует питать от отдельного фидера.

8.10. Сварочные материалы (покрытые электроды, порошковые проволоки, сварочные проволоки сплошного сечения, плавленые флюсы) должны соответствовать требованиям ГОСТ 9467-75, ГОСТ 26271-84, ГОСТ 2246-70 и ГОСТ 9087-81.

8.11. При входном контроле сварочных материалов следует установить наличие сертификатов или паспортов предприятия-поставщика.

При отсутствии сертификатов на сварочные материалы или истечении гарантийного срока их хранения необходимо определять механические свойства стыковых сварных соединений, выполненных с применением этих материалов. Сварные стыковые образцы следует испытывать на статическое растяжение, статический и ударный изгибы при температуре 20 °С в соответствии с ГОСТ 6996-66 и в количестве, указанном в п. 8.6.

Читать еще:  Акт визуального осмотра сварных швов

8.12. Сварочные материалы (электроды, проволоки, флюсы) необходимо хранить на складах монтажных организаций в заводской таре отдельно по маркам, диаметрам и партиям. Помещение склада должно быть сухим, с температурой воздуха не ниже 15 °С.

8.13. Покрытые электроды, порошковые проволоки и флюсы перед употреблением необходимо прокалить по режимам, указанным в технических условиях, паспортах, на этикетках или бирках заводов-изготовителей сварочных материалов.

Сварочную проволоку сплошного сечения следует очищать от ржавчины, жировых и других загрязнений.

Прокаленные сварочные материалы следует хранить в сушильных печах при 45-100 °С или в кладовых-хранилищах с температурой воздуха не ниже 15 °С и относительной влажностью не более 50 %.

8.14. Сварщик должен ставить личное клеймо на расстоянии 40-60 мм от границы выполненного им шва сварного соединения: одним сварщиком — в одном месте, при выполнении несколькими сварщиками — в начале и конце шва. Взамен постановки клейм допускается составление исполнительных схем с подписями сварщиков.

СБОРКА И СВАРКА МОНТАЖНЫХ СОЕДИНЕНИЙ

8.15. Сварку конструкций при укрупнении и в проектном положении следует производить после проверки правильности сборки.

8.16. Размеры конструктивных элементов кромок и швов сварных соединений, выполненных при монтаже, и предельные отклонения размеров сечения швов сварных соединений должны соответствовать указанным в ГОСТ 5264-80, ГОСТ 11534-75, ГОСТ 8713-79, ГОСТ 11533-75, ГОСТ 14771-76*, ГОСТ 15164-78, ГОСТ 23518-79.

8.17. Кромки свариваемых элементов в местах расположения швов и прилегающие к ним поверхности шириной не менее 20 мм при ручной или механизированной дуговой сварке и не менее 50 мм при автоматизированных видах сварки, а также места примыкания начальных и выводных планок необходимо зачищать с удалением ржавчины, жиров, краски, грязи, влаги и т. п. В конструкциях из сталей с пределом текучести более 390 МПа (40 кгс/кв.мм), кроме того, следует зачищать места приварки и примыкающие поверхности приспособлений.

8.18. Сварку надлежит производить при стабильном режиме. Предельные отклонения заданных значений силы сварочного тока и напряжения на дуге при автоматизированной сварке не должны превышать ±5 %.

8.19. Число прокаленных сварочных материалов на рабочем месте сварщика не должно превышать полусменной потребности. Сварочные материалы следует содержать в условиях, исключающих их увлажнение.

При сварке конструкций из сталей с пределом текучести более 390 МПа (40 кгс/кв.мм) электроды, взятые непосредственно из прокалочной или сушильной печи, необходимо использовать в течение двух часов.

8.20. Ручную и механизированную дуговую сварку конструкций разрешается выполнять без подогрева при температуре окружающего воздуха, приведенной в табл. 36. При более низких температурах сварку надлежит производить с предварительным местным подогревом стали до 120-160 °С в зоне шириной 100 мм с каждой стороны соединения.

8.21. Места приварки монтажных приспособлений к элементам конструкций из стали толщиной более 25 мм с пределом текучести 440 МПа (45 кгс/кв.мм) и более необходимо предварительно подогреть до 120-160 °С.

8.22. Автоматизированную дуговую сварку под флюсом разрешается производить без подогрева при температуре окружающего воздуха, приведенной в табл. 37.

При температуре, ниже указанной в табл. 37, автоматизированную сварку под флюсом надлежит производить с предварительным местным подогревом до 120-160 °С.

8.23. Автоматизированную электрошлаковую сварку элементов независимо от их толщины в конструкциях из низколегированных или углеродистых сталей допускается выполнять без предварительного подогрева при температуре воздуха до минус 65 °С.

8.24. В конструкциях, возводимых или эксплуатируемых в районах с расчетной температурой ниже минус 40 °С и до минус 65 °С включ. (при строительстве в климатических районах I1, I2, II2 и II3 согласно ГОСТ 16350-80), механизированную вышлифовку, кислородную и воздушно-дуговую поверхностную резку участков сварных швов с дефектами, а также заварку восстанавливаемого участка при температуре, указанной в табл. 36, следует выполнять после подогрева зоны сварного соединения до 120-160 °С.

Минимально допустимая температура окружающего воздуха, °С,

7. Контроль качества сварных соединений

7.1. Общие требования

7.1.1. Контроль качества работ по изготовлению и монтажу конструкций резервуаров должен осуществляться заказчиком, изготовителем и монтажником (производителем работ).

7.1.2. Проектировщик осуществляет авторский надзор за сооружением резервуаров. Представителям заказчика, а также представителям проектной организации, выполняющим авторский надзор, представляются свободный доступ ко всем рабочим местам, где выполняются работы по изготовлению и монтажу конструкций резервуаров, и рабочая документация.

7.1.3. При сооружении резервуаров применяются следующие виды контроля качества сварных соединений:

  • механические испытания сварных соединений образцов-свидетелей;
  • визуальный контроль всех сварных соединений резервуара;
  • измерительный с помощью шаблонов, линеек, отвесов, геодезических приборов и т.д.;
  • контроль герметичности (непроницаемости) сварных швов с пользованием проб «мел-керосин», вакуумных камер, избыточного давления воздуха или цветной дефектоскопии;
  • физические методы — для выявления наличия внутренних дефектов: радиография или ультразвуковая дефектоскопия, а для контроля наличия поверхностных дефектов с малым раскрытием — магнитография или цветная дефектоскопия;
  • гидравлические и пневматические прочностные испытания конструкции резервуара.

7.2. Организация контроля

7.2.1. В проектной документации (ППР) должны указываются методы и объемы контроля всех сварных соединений конструкций резервуара, нормативы для оценки дефектности сварных швов и последовательность работ.

7.2.2. Ответственность за организацию контроля качества сварных соединений, как правило, возлагается на руководителей сварочных работ от изготовителя и монтажника.

7.2.3. Контроль качества сварных соединений резервуаров физическими методами выполняется по заявке, в которой должны быть указаны характеристики соединения, тип и категория шва, толщина металла и марка стали, пространственное положение, объем контроля.

7.3. Визуальный контроль

7.3.1. Визуальному контролю должны подвергаться 100 % длины всех сварных соединений резервуара.

7.3.2. По внешнему виду сварные швы должны удовлетворять следующим требованиям:

  • по форме и размерам швы должны соответствовать проекту;
  • швы должны иметь гладкую или равномерно чешуйчатую поверхность (высота или глубина впадин не должка превышать 1 мм);
  • металл шва должен иметь плавное сопряжение с основным металлом;
  • швы не должны иметь недопустимых внешних дефектов.

7.3.3. К недопустимым внешним дефектам сварных соединений резервуарных конструкций относятся трещины любых видов и размеров, несплавления, наплывы, грубая чешуйчатость, наружные поры и цепочки пор, прожоги и свищи.
Подрезы основного металла допускаются не более величин, указанных в табл. 7.1.

Таблица 7.1

Примечание. Длина подреза не должна превышать 10 % длины шва.

7.3.4. Выпуклость швов стыковых соединений не должна превышать значений, указанных в табл. 7.2.

Таблица 7.2

7.3.5. Для стыковых соединений из деталей одной толщины допускается смещение свариваемых кромок относительно друг друга, не более:

  • для деталей толщиной до 10 мм — 1,0 мм;
  • для деталей толщиной более 10 мм — 10 % толщины, но не более 3 мм.

7.3.6. Выпуклость или вогнутость углового шва не должна превышать более чем на 20 % величину катета шва.

7.3.7. Уменьшение катета углового шва допускается не более 1 мм. Увеличение катета углового шва допускается не более следующих значений:

  • для катетов до 5 мм — 1,0 мм;
  • для катетов свыше 5 мм — 2,0 мм.

7.3.8. В местах пересечения сварных швов и в местах исправления дефектов необходимо обеспечивать минимальную концентрацию напряжений за счет обеспечения плавного сопряжения шва с основным металлом.

7.4. Контроль герметичности

7.4.1. Контролю на герметичность подлежат все сварные швы, обеспечивающие герметичность резервуара, а также плавучесть и герметичность понтона или плавающей крыши.

7.4.2. Контроль герметичности сварных швов с использованием пробы «мел-керосин» следует производить путем обильного смачивания швов керосином. На противоположной стороне сварного шва, предварительно покрытой водной суспензией мела или каолина, не должно появляться пятен. Продолжительность контроля капиллярным методом зависит от толщины металла, типа сварного шва и температуры испытания. Заключение о наличии в сварном соединении сквозных дефектов делается не ранее 1 ч после нанесения на шов индикатора сквозных и поверхностных дефектов.

7.4.3. При вакуумном способе контроля герметичности сварных швов вакуумкамеры должны создавать разрежение над контролируемым участком с перепадом давления не менее 250 мм вод. ст. Перепад давления должен проверяться вакуумметром. Неплотность сварного шва обнаруживается по образованию пузырьков в нанесенном на сварное соединение мыльном или другом пенообразующем растворе.

7.4.4. Допускается не производить контроль на герметичность стыковых соединений листов стенки толщиной 12 мм и более.

7.4.5. Контроль давлением применяется для проверки герметичности сварных швов приварки усиливающих листовых накладок люков и патрубков на стенке резервуаров. Контроль производится путем создания избыточного воздушного давления от 400 до 4000 мм вод. ст. в зазоре между стенкой резервуара и усиливающей накладкой с использованием для этого контрольного отверстия в усиливающей накладке. При этом на сварные швы внутри и снаружи резервуара должна быть нанесена мыльная пленка, пленка льняного масла или другого пенообразующего вещества, позволяющего обнаружить утечки. После проведения испытаний контрольное отверстие должно быть заполнено ингибитором коррозии.

Читать еще:  Чем обработать сварной шов на автомобиле?

7.4.6. Контроль герметичности сварных соединений настила крыш резервуаров рекомендуется проводить в процессе гидравлических и пневматических испытаний за счет создания избыточного давления воздуха внутри резервуара до 150 ÷ 200 мм вод. ст.

7.5. Физические методы контроля

7.5.1. Объем контроля сварных соединений резервуаров физическими методами определяется в рабочей документации КМ в зависимости от:

  • класса резервуара по степени опасности;
  • категории сварного шва;
  • уровня расчетных напряжений в сварном соединении;
  • условий и режима эксплуатации резервуара, включая температуру эксплуатации, цикличность нагружения, сейсмичность района и т.д.

7.5.2. Контроль радиографический.

7.5.2.1. Контроль радиографический (рентгенографированием или гаммаграфированием) должен производиться в соответствии с нормативными документами, утвержденными в установленном порядке, для всех резервуаров объемом 1000 м 3 и более.
Наряду с радиографическим контролем может применяться рентгенотелевизионный контроль согласно установленным нормативным документам.
Радиографический контроль выполняется только после приемки сварных соединений по визуальному контролю.
При контроле пересечений швов рентгеновские пленки должны размещаться Т-образно или крестообразно — по две пленки на каждое пересечение швов.
Снимки должны иметь длину не менее 240 мм, а ширину — согласно соответствующим стандартам. Чувствительность снимков должна соответствовать 3-му классу согласно этому стандарту.
Маркировочные знаки должны устанавливаться согласно стандарту и содержать идентификационные номера резервуара и контролируемого конструктивного элемента, а также номер рентгенограммы, указанный на развертке контролируемого элемента.
Для соединений из деталей толщиной 8 мм и более допускается вместо радиографического контроля применять контроль ультразвуковой дефектоскопией.

7.5.2.2. Оценка внутренних дефектов сварных швов при радиографическом контроле должна производиться по соответствующим стандартам и должна соответствовать:

  • для резервуаров III класса — 6-му классу;
  • для резервуаров II класса — 5-му классу;
  • для резервуаров I класса — 4-му классу.

Допускаемые виды и размеры дефектов в сварных соединениях в зависимости от их класса регламентируются соответствующими стандартами.

7.5.2.3. Радиографический контроль применяется для контроля стыковых сварных швов стенки и стыковых швов окраек днищ в зоне сопряжения со стенкой резервуаров.
Количество и размещение рентгенограмм устанавливается следующим образом: полотнища стенок резервуаров должны контролироваться в соответствии с табл. 7.3.;
Участки всех вертикальных сварных соединений в зонах примыкания к днищу длиной не менее 240 мм на резервуарах объему более 1000 м 3 подлежат обязательному контролю.
При выборе зон контроля вертикальных и горизонтальных соединений преимущественное внимание уделять проверке качества мест пересечения швов.
монтажные стыки полотнищ стенок должны контролироваться в объеме 100 % вертикальных швов и всех пересечений вертикальных и горизонтальных швов;
стенки резервуаров полистовой сборки должны контролироваться в соответствии с табл. 7.4;

Внешний осмотр и обмеры сварных швов и соединений

Внешний осмотр

Внешний осмотр и обмеры сварных швов и соединений являются первыми контрольными операциями по приемке готового сырья узла или изделия. Им подвергают все сварные швы независимо от того, как они будут испытаны в дальнейшем.

Внешним осмотром выявляют такие наружные дефекты, как непровары, наплывы, прожоги, незаваренные кратеры, подрезы, трещины, поверхностные поры, смещение свариваемых деталей.

Перед осмотром сварной шов и прилегающую к нему поверхность основного металла на ширине не менее 20 мм по обе стороны шва очищают от шлака, застывших брызг металла, окалины и других загрязнений. Швы осматривают невооруженным глазом или применяя лупу с увеличением до 10 раз по всей их протяженности и (в случае доступности) обязательно с двух сторон. При недостаточном освещении используют карманные фонари или переносные электрические лампочки. Хорошо выполненный сварной шов имеет плавный переход к основному металлу, без наплывов и подрезов, а также равномерную ширину и высоту на всей длине.

По внешнему виду шва можно установить причину появления тех или иных дефектов. Так, при малом токе шов получается слишком высокий, с закругленными краями и неглубоким проваром; завышенный ток ведет к неровностям краев шва и появлению подрезов. При сварке длинной дугой происходит интенсивное разбрызгивание металла и шов неодинаков по ширине. Неравномерные чешуичатость, ширина и высота шва указывают на нарушения режима сварки и частые обрывы дуги. В этих случаях возможны непровары и поры.

Особенно тщательно осматривают незаваренные кратеры, так как в них наиболее часто образуются трещины и поры. При обнаружении трещин их границы выявляют шлифовкой дефектного места наждачной бумагой и травлением 20%-ным раствором азотной кислоты, а в отдельных случаях засверливанием или подрубкой зубилом. Мелкие трещины обнаруживают при нагревании сварного соединения до вишнево-красного цвета, когда они ярко выделяются на светлом фоне нагретого металла.

Осматривая швы на сталях, склонных к закалке, необходимо обращать внимание на характер распределения нагара по поверхности деталей. Металлическая пыль и частицы окалины под действием магнитных полей, возникающих при прохождении сварочного тока, скапливаются над трещиной в виде продолговатого бугорка. Эти места следует осматривать особенно тщательно. Трещина в шлаке часто указывает на наличие трещины в шве.

Внешний осмотр сварных швов на легированных сталях с целью выявления трещин выполняют дважды: сразу же после сварки и спустя 15—30 дней. Это объясняется тем, что структурные изменения в легированных сталях происходят медленно, и трещины могут появиться после того, как изделие уже осмотрено.

Обнаруженные трещины разделывают до основного металла, после чего их заваривают и проводят повторный контроль шва.

Результаты внешнего осмотра позволяют предположительно судить о местах расположения внутренних дефектов и их характере. Так, например, подрез на одной из сторон шва и наплыв на другой указывают на возможный непровар по его кромке; грубая чешуйчатость с закатами шва и ноздреватость свидетельствуют о повышенной пористости шва и загрязненности его неметаллическими включениями; непостоянная ширина шва часто является следствием неравномерной ширины зазора между свариваемыми кромками. В местах же с малым или очень большим зазором могут быть непровары, о наличии которых судят по перекосам, смещению кромок, большой высоте шва и мелким кратерам.

В некоторых случаях при внешнем осмотре применяют эталоны, по которым оценивают качество сварных швов изделия.

Обмеры сварных швов

Качество сварного соединения в значительной мере характеризуется размерами сварных швов. Недостаточное сечение шва уменьшает его прочность, завышенное — увеличивает внутренние напряжения и деформации в нем.

Для проверки размеров сечения у стыковых швов замеряют их ширину, высоту усиления и размер обратной подварки; в угловых швах, соединениях внахлестку и втавр,— катет шва. Значения этих величин, а также допускаемые отклонения устанавливаются техническими условиями или ГОСТами.

Размеры сварного шва контролируют измерительным инструментом с точностью измерения ± 0,1 мм или специальными шаблонами, имеющими вырезы под определенный шов, размер которого указан (выбит) на шаблоне.

Кроме того, есть предельные шаблоны с наибольшими (проходными) и наименьшими (непроходными) контрольными вырезами. Количество таких шаблонов должно соответствовать номенклатуре сварных швов и типов сварных соединений.

Удобно применять универсальные шаблоны, пригодные как для обмера швов, так и для проверки правильности подготовки кромок под сварку.

Ширину стыкового шва контролируют штангенциркулем, а шаг прерывистого шва — обычной металлической линейкой или складным метром.

Степень коробления изделия в процессе сварки и после нее определяют с помощью линеек, индикаторов, прогибомеров и тензометров.

Обязательному контролю подлежит уровень поверхности сваренных деталей. Для этой цели используют прибор, состоящий из штанги, рамки, стопорного винта, ножки и основания. При совпадении нулевых штрихов линейки и нониуса базовая поверхность основания и поверхность ножки находятся в одной плоскости. Прибор устанавливают основанием на одну из свариваемых деталей и ножкой — на вторую. Смещение поверхностей деталей по высоте отсчитывают на линейке от места совпадения штрихов ее шкалы и нониуса. Прибор прост в изготовлении и эксплуатации. Его использование сокращает длительность замеров и повышает точность измерения.

Вопрос о том, в какой степени допустимы те или иные дефекты выявляемые внешним осмотром и обмерами сварных швов, оговаривается в технических условиях на изготовление изделий.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector