2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Дефекты сварных швов на рентгеновских снимках

Дефекты сварных швов на рентгеновских снимках

Адрес
197341, Санкт-Петербург
Афонская ул., д.2

Телефон / Факс

О ТДЕЛ СВАРКИ

Адрес
196105, Санкт-Петербург
ул. Рощинская, д.46

Телефон / Факс

388-00-01
387-65-82

pkti-spb@yandex.ru
Начальник Отдела Сварки, Руководитель Испытательной Лаборатории, Председатель Аттестационной Комиссии сварщиков:
Белов Иван Павлович

Р АЗДЕЛЫ САЙТА

Испытательная лаборатория «ПКТИ» осуществляет рентгеновский контроль качества сварных соединений различного назначения.

Одним из основных методов неразрушающего контроля является радиографический метод контроля (РК). Данный вид контроля широко используется для проверки качества технологических трубопроводов, металлоконструкций, технологического оборудования, композитных материалов в различных отраслях промышленности и строительного комплекса. Радиографический метод контроля сварных соединений осуществляется в соответствии с требованиями ГОСТ 7512-86.

Радиографический контроль сварных соединений позволяет выявлять наличие в них пор, непроваров, шлаковых, вольфрамовых окисных и других включений, подрезов, трещин. Кроме того, радиографический контроль позволяет производить оценку величины выпуклости и вогнутости корня шва в недоступных для внешнего осмотра местах, например с противоположной стороны сварного шва.

Радиографический метод контроля основан на способности рентгеновских лучей проникать через металл и воздействовать на светочувствительную рентгеновскую пленку, расположенную с обратной стороны сварного шва. В местах, где имеются дефекты сплошности контролируемого материала (непровары, поры, трещины, шлаковые включения и др.) поглощение лучей будет меньше и они будут более активно воздействовать на чувствительный слой рентгеновской пленки.

Рис. 1
а – просвечивание сварного шва рентгеновскими лучами
б – просвечивание сварного шва гамма-лучами
1 – рентгеновская трубка;
2 – ампула с радиоактивным веществом в защитном свинцовом кожухе;
3 – рентгеновские лучи;
4 – гамма-лучи;
5 – сварной шов;
6 – кассета с рентгеновской пленкой.

После проведения рентгенографирования радиографические пленки проявляются, после чего производится их расшифровка с помощью негатоскопа с целью описания и регистрации выявленных дефектов.


Рис. 2 а, б. Рентгенографическое изображение стыковых сварных швов с дефектами

При радиографическом контроле используются радиографические пленки, соответствующие требованиям технических условий на них. Тип радиографической пленки устанавливается технической документацией на контроль или приемку сварных соединений. Тип радиоактивного источника, напряжение на рентгеновской трубке, а также расстояние от источника излучения до изделия должны устанавливаться в зависимости от толщины просвечиваемого материала в соответствии с технической документацией на контроль или приемку сварных соединений. В качестве усиливающих экранов при радиографическом контроле используются металлические и флуоресцирующие экраны, тип которых устанавливается технической документацией на контроль или приемку сварных соединений.

Основные возможности рентгеновского контроля:
— Возможность обнаружить такие дефекты, которые невозможно выявить любым другим методом — например, непропаев, раковин и других;
— Возможность точной локализации обнаруженных дефектов, что дает возможность быстрого ремонта;
— Возможность оценки величины выпуклости и вогнутости валиков усиления сварного шва.

Проведение дефектоскопии с применением рентгеновского просвечивания металлов является наиболее достоверным способом контроля сварных соединений и основного металла, позволяющим наглядно определять вид и характер выявленных дефектов, достаточно точно определять их месторасположение, а также архивировать результаты контроля. Кроме того, современные аппаратно-программные комплексы позволяют осуществлять автоматизированную расшифровку рентгеновских снимков

К существенным недостаткам радиографического контроля следует отнести его рентгеновское излучение, являющееся ионизирующим, которое оказывает воздействие на живые организмы, и может являться причиной лучевой болезни и рака. По этой причине при работе с рентгеновским излучением необходимо соблюдать меры защиты, а организации, осуществляющие ренгенографический контроль в обязательном порядке должны иметь Лицензию на проведение работ, связанных с использованием Источников ионизирующего излучения (ИИИ) и Санитарно-Эпидемиологическое Заключение (СЭЗ) выданные Федеральной службой Роспотребнадзора.
Кроме того, к недостаткам радиографического контроля следует отнести тот факт, что при контроле не выявляются несплошности и включения:
с размером в направлении просвечивания менее удвоенной чувствительности контроля;
если их изображения на снимках совпадают с изображениями посторонних деталей, острых углов или резких перепадов толщин просвечиваемого металла;
трещины и непровары, плоскость раскрытия которых не совпадает с направлением просвечивания.

Рентгенографический Контроль

наряду с другими физическими методами (ультразвуковой контроль, капиллярный контроль, магнитно-порошковый контроль, визуально-измерительный контроль ) является надежным и высокоэффективным средством для выявления возможных дефектов. Требует наличия специально подготовленных специалистов, специализированного оборудования и вспомогательных средств контроля.
Некоторые производители в целях экономии или некомпетентности игнорируют проведение неразрушающего контроля продукции или вспоминают о нём только на последней стадии — уже непосредственно перед сдачей объекта (а это приводит к дополнительной потери времени и непредусмотренным расходам), когда контроль бывает технически неосуществим. Подобное отношение к контролю качества чаще всего приводит к аварийным ситуациям в процессе эксплуатации и способно привести даже техногенным катастрофам.
Обращайтесь к нам вовремя!
Наша лаборатория неразрушающего контроля качественно выполнит рентгенографический контроль сварных швов и основного металла, трубопроводов, емкостей, сосудов и металлоконструкций различного назначения.

Мы всегда готовы выполнить ваш заказ оперативно и на высоком уровне!

Звоните т./ф.: (812) 388-00-01

Начальник отдела Белов И.П.

УСЛУГИ
ПОДРАЗДЕЛЕНИЯ:

Другие подразделения ›››

* Стоимость работ по механическим испытаниям контрольных образцов и неразрушающим методам контроля устанавливается по ТЕРм-2001 СПб сборник №39 (контроль монтажных сварных соединений)

Радиографический контроль (РК)

Наше производственное объединение 10 лет оказывает услуги по рентгенографическому контролю сварных соединений. Для проведения данного анализа у нас имеется все необходимое современное оборудование и опытные специалисты, четко владеющие технологией.

Благодаря информативности и точности рентгенографического метода контроля, он обязателен к применению в областях, где существуют высокие требования к качеству и надёжности изделия. Информативность метода уже давно сделала его безальтернативным во многих областях машиностроения, металлообработки и строительства.

Что такое радиографический контроль

При соединении или обработке металлических деталей с помощью любого вида сварки могут образоваться дефекты швов в результате неправильной технологии сваривания, недостаточно обработанная поверхность, попадание инородных частиц. Такие дефекты могут существенно влиять на работу соединения и его прочностные характеристики.

Методика радиографии сварных швов помогает выявить такие дефекты на их ранней стадии развития. Таким образом, радиографический метод контроля сварных соединений представляет собой неразрушающий способ для проверки материалов на наличие скрытых дефектов. Такой вид проверки использует способность рентгеновских волн глубоко проникать в различные материалы.

Раннее обнаружение дефектов в сварных швах и их устранение предотвратит аварийно-опасные ситуации в будущем.

Рентгеновский метод неразрушающего контроля признан одним из наиболее точных и объективных способов подтверждения качества выполненных соединений металлических деталей и конструкций. С помощью рентгенографии можно выявить большинство серьезных дефектов, определить их характер и размеры.

Методика пригодна для радиографического контроля сварных соединений трубопроводов, силосов, резервуаров и резервуарного оборудования, противопожарного и нефтеналивного оборудования, дымовых труб, нестандартных металлоконструкций и любых изделий, где была использована сварка, в качестве соединительного элемента.

Суть рентгенографического метода контроля

Принцип рентгенографического контроля основан на исследовании образца в токе рентгеновских лучей. С одной стороны расположен источник излучения, с другой — чувствительная плёнка или матрица. После прохождения через однородный материал получается одинаковая равномерная засветка. В случае нахождения в образце изъянов и неоднородностей, засветка на плёнке или матрице изменяется.

Рентгенографический метод контроля сварных соединений — один из самых достоверных методов неразрушающего контроля. Его применяют повсеместно в случаях, когда требуется высокий уровень качества и надёжности сварного шва соответствующего стандартам. Несмотря на несколько более высокую цену рентгеновского контроля, его применение обязательно для подтверждения годности ответственных изделий.

Дефектоскопия с помощью рентгеновского метода контроля

С помощью рентген контроля достоверно выявляются невидимые дефекты, с высокой точностью определяется их пространственное положение, производятся замеры, выявляется геометрическая форма.

Рентгенография информативно и достоверно позволяет выявить и охарактеризовать ряд неприемлемых дефектов сварки:

  • Холодные и горячие трещины. Холодные трещины возникают после затвердевания шва и зачастую невидимы человеческому глазу. Горячие трещины соответственно появляются до момента затвердевания шва;
  • Образование пор – самый часто встречающийся дефект сварки из-за плохо подготовленной поверхности, сквозняка в зоне сварки и др.;
  • Вкрапления инородных материалов, шлака;
  • Прожог шва – образование сквозных отверстий в шве;
  • Подрезы – дефект в виде канавки в основном металле по краю сварочного шва;
  • Наплывы – образовывается вследствие натекания присадочного материала на основной металл без образования сплавления между ними;
  • Непровары – возникают из-за недостатка сварочного тока, вследствие чего он не проникает глубоко в металл;
  • Рыхлые участки сварного шва.

Оборудование и инструменты для выполнения рентген контроля сварных швов

Для проведения данного метода контроля используется излучающий элемент в специальной емкости. Такие устройства выпускаются в импульсном режиме и с постоянным напряжением на аноде.

Импульсные рентген аппараты

Более современными являются импульсные аппараты. Они имеют маленький вес, просто регулируются, однако качество фотографий немного ниже, чем на аппаратах с постоянным напряжением на аноде. Существует возможность съемки не только в прямом направлении, а в панорамном режиме.

Рентген аппараты с постоянным потенциалом

Выбор такого вида устройств, представлен на рынке шире, чем импульсные аппараты. Устройство имеет постоянное напряжение на рентгеновской трубке. Снимки с него получаются более качественные с высоким разрешением, так как имеется возможность регулирования напряжения для заданной толщины. Выпускаются или в прямым направлением съемки, или с панорамным, в зависимости от назначения.

Технология контроля сварных швов рентгеном

Каждое исследование имеет ряд неизменных процедур. При рентгеновском контроле сварных соединений специалист проводит:

  1. Выполняется подготовка объекта обследования: очищается от ржавчины и других загрязнений.
  2. Далее объект обследования располагают таким образом, чтобы сварной шов был распложен между приемником прибора и излучателем.
  3. Специалист включает прибор, и излучение проникает в шов, а после идет к приемнику.
  4. Информация с датчика приемника выводится на экран и эти данные пригодны для обработки специалистом, и предоставления заказчику в виде отчета о результатах обследования.

Процедура может быть опасна для здоровья человека, поэтому требует полного соблюдения техники безопасности и наличия специальной защиты.

Достоинства рентгенографического контроля

Метод контроля сварных соединений с помощью рентгеновского просвечивания, несмотря на несколько высокую стоимость, имеет ряд важных преимуществ:

  • Большая точность и информативность;
  • Возможность выявления видимых и невидимых дефектов сваривания;
  • Возможность определения внутренних изъянов и их локализации;
  • Быстрое получение результатов;
  • Наглядность результатов;
  • Объективность результатов и возможность их регистрации.

Недостатки рентгенографического метода контроля

У каждого метода неразрушающего контроля существуют недостатки. Рентгенография не исключение, однако, ее недостатков немного:

  • Сравнительно высокая цена исследований;
  • Нечувствительность к некоторым видам дефектов;
  • Опасность радиационного излучения для здоровья человека без специальной защиты;
  • Высокие требования к квалификации персонала, занятого в осуществлении процедур рентгенографического контроля.

Стоимость оказываемой услуги

При использовании радиографии важную роль играет понимание ценообразования в этой области. Удельная величина расходов на контрольные функции с использованием радиационного излучения зависит от многих факторов, связанных с грамотным распределением рабочего времени, использованием приборов и специальных средств.

Как правило, выполнение таких работ собственными силами нецелесообразно по причине высокой стоимости начальных затрат на приобретение оборудования и материалов, обучение персонала, получение требуемых разрешительных документов.

В силу указанных причин чаще всего процессы, связанные с радиографическим контролем поручают специализированным организациям, имеющим в распоряжении:

  • Сертифицированное оборудование и материалы;
  • Опыт организации работ с минимальным уровнем производственных и временных затрат;
  • Подтверждающие документы и сведения об уровне технической оснащённости и компетенций;
  • Квалифицированный опытный персонал в достаточном количестве.

Прейскурант цен на работы по неразрушающему контролю сварных соединений рентгенографическим методом

Окончательная цена рентгенографического контроля сварных соединений зависит от количества элементов требующих контроля, временных рамок и других факторов, которые могут затруднять обследование.

Преимущества заказа услуги ПО «ВЗРК»

  1. Гарантируем качество оказываемой услуги.
  2. Наши клиенты всегда могут рассчитывать на предельное внимание к деталям и упреждающее решение проблем.
  3. Конкурентоспособная цена.
  4. Выполнение в короткие сроки.
  5. Отработанный механизм работы.
  6. Опытные сотрудники.
  7. Поверенное современное оборудование.

Для заказа услуги по рентгенографическому контролю ПО «ВЗРК»

Для связи с нашим предприятием Вы можете воспользоваться онлайн формой на сайте, в таком случае в короткие сроки мы сами свяжемся с Вами. Также Вы сами можете позвонить нам по указанным в начале страницы телефонам. Наши сотрудники ответят на все интересующие вопросы, проконсультируют по имеющимся возможностям оказания услуги и примут Ваш заказ.

научная статья по теме ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ДЕФЕКТОВ СВАРНЫХ СОЕДИНЕНИЙ ПО СКАНИРОВАННЫМ РЕНТГЕНОВСКИМ СНИМКАМ Общие и комплексные проблемы технических и прикладных наук и отраслей народного хозяйства

Цена:

Авторы работы:

Научный журнал:

Год выхода:

Текст научной статьи на тему «ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ДЕФЕКТОВ СВАРНЫХ СОЕДИНЕНИЙ ПО СКАНИРОВАННЫМ РЕНТГЕНОВСКИМ СНИМКАМ»

ОПРЕДЕЛЕНИЕ РАЗМЕРОВ ДЕФЕКТОВ СВАРНЫХ

СОЕДИНЕНИЙ ПО СКАНИРОВАННЫМ РЕНТГЕНОВСКИМ

Е.В. Круглова.Л.В. Князюк

Излагается метод расчета глубины непровара в корне сварного шва по его изображению на рентгеновском снимке. Приводятся результаты апробации метода на искусственных и натуральных дефектах.

Цель настоящего исследования — разработка и апробация способа определения размеров дефектов сварного соединения на основе объединения метода фотометрирования изображения дефекта с компьютерной обработкой изображения по специальной программе, что позволяет ускорить процесс обработки и увеличить точность расчета глубины непровара.

Наиболее распространенными дефектами сварных швов являются не-провары. Непровар — это отсутствие сплавления между основным и наплавленным металлом. В данной работе рассматривается частный случай — непровар в корне сварного шва.

По ГОСТ 7512—82 «Контроль неразрушающий. Соединения сварные. Радиографический контроль» и ГОСТ 23055—78 «Классификация сварных соединений по результатам радиографического контроля» за размер непровара принимается длина его изображения на рентгеновском снимке. Размер дефекта в направлении просвечивания (глубина) не определяется. В настоящее время при обнаружении на рентгеновском снимке изображения непровара длиной свыше допустимого участок сварного шва бракуется независимо от глубины непровара.

Совершенно очевидно, что существующая система оценки допустимости непровара только по одному параметру (длине его изображения на рентгеновском снимке) порочна, так как глубокие непровары могут допускаться без исправления и, наоборот, неглубокие непровары бракуют, исправляют и снова просвечивают. По мнению конструкторов непровары глубиной 5—15 % от свариваемой толщины для некоторых категорий сварных швов вполне допустимы и не снижают работоспособности сварной конструкции.

В литературе [1—3] предложены различные методы оценки глубины дефекта. Все они имеют ограничения и погрешности, которые не позволяют широко использовать их в промышленности.

ОБОСНОВАНИЕ МЕТОДИКИ ОПРЕДЕЛЕНИЯ ГЛУБИНЫ ДЕФЕКТА

Непровар в корне сварного шва на рентгеновском снимке выглядит как темная прямая линия соответствующей ширины и степени почернения, проходящая вдоль сварного шва по его середине. Вместе со сварным соединением просвечивается канавочный эталон чувствительности, который содержит имитаторы дефектов в виде углублений (канавок) прямоугольного сечения. Ширина всех канавок эталона одинакова, а глубина меняется.

Необходимо, используя рентгеновский снимок сварного соединения и эталона, определить характеристики непровара, требующиеся для принятия решения о пригодности или непригодности детали. Такими характеристиками будем считать глубину, ширину непровара и нерезкость изображения.

Для расчета искомых характеристик анализируется распределение оптической плотности почернения в сечениях снимка, перпендикулярных

направлению ненровара. Поскольку на рентгеновском снимке присутствует изображение эталона, ширина и глубина канавок которого известны, можно определить характеристики исследуемого дефекта, сравнивая изображение дефекта с изображениями канавок эталона. Для расчета характеристик канавок эталона или дефекта требуется количественное измерение оптической плотности почернения снимка. Для определения глубины дефекта необходимо измерить контраст изображения дефекта, то есть разность оптических плотностей почернения изображений самого дефекта и фона.

Рис. 1. Участок кривой оптической плотности

почернения: И — нерезкость изображения дефекта; 5 — ширина дефекта; /. — верхний горизонтальный участок; К — контраст изображения дефекта.

Рассмотрим дефект прямоугольного сечения. Даже в этом случае на снимке ступенчатая форма кривой оптической плотности почернения не сохраняется (рис. 1). Изменение плотности почернения распространяется на некоторое расстояние, величина которого называется нерезкостью.

Рис. 2. Влияние ширины дефекта на контраст его изображения.

Когда нерезкость превышает ширину дефекта, дефект теряет свои истинные размеры, контраст уменьшается (рис. 2). Следовательно, для узких дефектов «прямое» определение ширины и глубины приведет к ошибке.

Будем различать непровары 1-го рода (5 > Н) и непровары 2-го рода (5 ,

0,00 0,50 1,00 1,50 2,00 Истинная грубина дефекта, мм

Рис. 4. Зависимость рассчитанной глубины дефекта от истинной. Дефект расположен:

• — со стороны источника излучения; О — со стороны пленки.

По результатам расчета построены графики зависимости рассчитанного значения глубины дефекта от истинного для двух типов расположения дефекта (рис. 4). Средняя относительная погрешность составила: для дефекта, расположенного со стороны пленки, 13 %, для дефекта, расположенного со стороны источника, 30 %.

Рис. 5. Разрез сварного образца с непроваром в корне шва.

Результаты тестирования показали, что в среднем рассчитанная величина глубины дефекта линейно зависит от истинного значения.

Для расчета натуральных дефектов были просвечены сварные образцы, в которых выявили непровары в корне шва. Просвеченные образцы были разрезаны, изготовлены шлифы, измерены истинные размеры не-проваров (рис. 5). В этих же сечениях по отсканированному снимку проведен расчет размеров непровара.

Среднее значение относительной погрешности составило 14,5 %, что согласуется с результатами расчета искусственных дефектов.

По результатам работы разработана методика определения глубины непровара в корне сварного шва по сканированному рентгеновскому снимку. Эта методика опробована на сварных швах толщиной до 10 мм.

Определение размеров дефектов сварных соединений.

Поступила в редакцию 21 апреля 2003 г.

1. Румянцев C.B. Радиационная дефектоскопия.— М.: Атомиздат, 1974.— 560 с.

2. Зуев В.М. Фотометрическая оценка размеров дефектов в направлении просвечивания.— Дефектоскопия, 1993, № 5, с. 87—93.

3.Межуев В. А. и др. Рентгенотелевизионный контроль сварных швов TBC для ядерных реакторов.— В мире НК, 2000, № 4, с. 41—43.

4. Дмоховский В.В. Основы рентгенотехники.— М.: Медгиз, 1960.— 352 с.

Для дальнейшего прочтения статьи необходимо приобрести полный текст. Статьи высылаются в формате PDF на указанную при оплате почту. Время доставки составляет менее 10 минут. Стоимость одной статьи — 150 рублей.

Пoхожие научные работы по теме «Общие и комплексные проблемы технических и прикладных наук и отраслей народного хозяйства»

  • АВТОМАТИЧЕСКОЕ ОБНАРУЖЕНИЕ НЕПРОВАРОВ И ГАЗОВЫХ ПОР ПРИ УЛЬТРАЗВУКОВОМ КОНТРОЛЕ СВАРНЫХ ШВОВ ЦИРКОНИЕВЫХ ОБОЛОЧЕК ТЕПЛОВЫДЕЛЯЮЩИХ ЭЛЕМЕНТОВ

АЛЕКСАНДРОВ А.Б., ВАСЮКОВ В.Н., ГРУЗМАН И.С., ЖУКОВ Ю.А., КАРЛОВ Ю.К., МАРЧЕНКО В.Г., СПЕКТОР А.А. — 2004 г.

КАНИФАДИН КИРИЛЛ ВЛАДИМИРОВИЧ, ЛАЗНЕНКО СВЕТЛАНА АНАТОЛЬЕВНА, СТЕПАНОВА ЛЮДМИЛА НИКОЛАЕВНА — 2010 г.

КАБАНОВ СЕРГЕЙ ИВАНОВИЧ, КАНИФАДИН КИРИЛЛ ВЛАДИМИРОВИЧ, КАТАРУШКИН СЕРГЕЙ АЛЕКСАНДРОВИЧ, ЛЕБЕДЕВ ЕВГЕНИЙ ЮРЬЕВИЧ, СТЕПАНОВА ЛЮДМИЛА НИКОЛАЕВНА, ЧАПЛЫГИН ВЛАДИМИР НИКИФОРОВИЧ — 2012 г.

ГРИГОРЧЕНКО СЕМЕН АЛЕКСЕЕВИЧ, КАПУСТИН ВИКТОР ИВАНОВИЧ — 2009 г.

Радиографический контроль: увидеть объект насквозь

Для выявления подповерхностных дефектов радиографический контроль сварных соединений (РК, РГК) был и остаётся одним из наиболее надёжных и достоверных видов НК. Метод «эксплуатирует» проникающую способность рентгеновских лучей. Они по-разному поглощаются металлом и внутренними дефектами, и это отчётливо видно на рентгеновских снимках. По результатам их расшифровки стык можно смело признать годным либо забраковать.

Метод используется для наиболее ответственных объектов, включая магистральные и технологические нефте- и газопроводы, РВС, всевозможные сосуды, работающие под давлением, трубопроводную арматуру и пр. Рентген активно применяется в заводских лабораториях и службах ОТК на предприятиях по производству оборудования для атомных электростанций – насосов, корпусов и теплообменников парогенераторов, котлов и т.д. Метод успешно практикуется и в авиакосмической отрасли – для обследования ответственных деталей из композитов.

Технология проведения рентгеновского контроля сварных швов

Сильные и слабые стороны рентген-контроля сварных швов

Однако при всех своих достоинствах радиографический контроль сварных соединений не идеален. Прежде всего, согласно п. 1.3 ГОСТ 7512-82, данный способ не предназначен для выявления:

  • несплошностей и включений, размер которых в направлении просвечивания меньше, чем удвоенная чувствительность контроля;
  • непроваров и трещин с плоскостью раскрытия, отличающейся от направления просвечивания. При этом величина их раскрытия ниже, чем нормированное значение. Для каждой радиационной толщины оно своё – и может составлять 0,1–0,5 мм;
  • любых несплошностей и включений, изображение которых на снимке «накладывается» на изображение посторонних деталей либо места резкого изменения толщины металла.

На этом недостатки не заканчиваются. Рентген не совершенен ещё и потому, что:

  • основан на использовании рентгеновского излучения – опасного для человеческого здоровья и окружающей среды. Отчасти это проблема компенсируется дополнительными выплатами для персонала, ранним выходом на пенсию и прочими льготами. Во избежание несчастных случаев перед проведением РК рабочую зону огораживают при помощи ленты. Дополнительно используются сигнальные огни для предупреждения посторонних лиц;
  • связан с трудоёмкой фотохимической обработкой снимков. Этот пункт актуален только для традиционного радиографического контроля, построенного на плёночных технологиях. В цифровой радиографии всё проще и быстрее. Но этот способ пока только набирает популярность. ГОСТ Р 50.05.07-2018, например, строго предписывает использование плёнок. А это значит, что нужно разбираться в проявке, знать и соблюдать правила работы с реактивами, решать проблему утилизации отходов и т.д. Всё это создаёт дополнительные требования к персоналу;
  • требует оформления лицензии на работу с ИИИ, санитарно-эпидемиологического заключения и иных разрешительных документов;
  • предполагает существенные затраты. Стоимость рентген-аппаратов достигает несколько миллионов рублей, не говоря о дополнительном оборудовании и постоянной потребности в расходниках (об этом ниже). Правда, цифры здесь относительны, так как проведение РК позволяет избежать по-настоящему страшных аварий, ущерб от которых нельзя оценить никакими деньгами. Как пример – просвечивание швов обечайки реакторной установки на АЭС.

Оборудование и материалы для рентгеновского контроля сварных соединений

Традиционный радиографический метод контроля сварных соединений нуждается и в большом количестве расходных материалов. К таковым относятся форматные и рулонные рентгеновские плёнки, реагенты (проявитель, фиксаж, стартер, концентраты для очистки проявочной техники), флюоресцентные и свинцовые усиливающие экраны. Резку плёнок осуществляют при помощи специальных резаков.

Отдельную категорию принадлежностей составляют аксессуары, задача которых в том, чтобы упростить расшифровку и сделать её более точной. Так, в лабораториях РГК очень востребованы:

  • трафареты (мерные шаблоны). Это прозрачные плёнки, на которые нанесены линейки и прочая вспомогательная разметка. С такими трафаретами намного легче измерять выявленные трещины, поры и другие дефекты;
  • меры оптической плотности. Представляют собой фрагменты рентгеновской плёнки различной оптической плотности. Используются для настройки денситометра и визуального сравнения с имеющимся снимком;
  • универсальные шаблоны радиографа. Более «продвинутая» версия трафаретов с дополнительными разметками, маркерами и иными вспомогательными изображениями. При наличии УШР гораздо проще определять вид дефектов, их диаметр, протяжённость, глубину и др.

Обучение и аттестация специалистов радиографического контроля

Проводить радиографический контроль сварных швов с оформлением заключений могут только аттестованные лаборатории аттестованные и/или сертифицированные специалисты по ПБ 03-440-02, ISO 9712, ISO 17024 и др. Для аттестации на I и II уровень необходимо иметь среднее или высшее техническое образование какого-либо инженерного вуза либо университета. Дополнительно нужно пройти специализированные курсы по программе, согласованной с Независимым органом по аттестации персонала. Для кандидатов на присвоение II квалификационного уровня вместо этого могут зачесть опыт работы по НК с составлением методических документов.

Подготовка соискателей для допуска к квалификационным экзаменам по радиографическому контролю должна занимать не менее 40 (для I уровня) или 80 (для II уровня) часов. Производственный опыт должен быть не менее 6 месяцев (для кандидатов на I уровень), 12 месяцев либо 18 месяцев – для кандидатов, имеющих или не имеющих I уровень соответственно.

Что касается III уровня, то для его получения кандидату нужно иметь II уровень (либо успешно сдать практический экзамен на него), среднее либо высшее техническое образование. В зависимости от этих условий производственный опыт должен составлять не менее 24–72 месяцев.

Комплекс расшифровки рентгеновских снимков “ТехЭксперт”

Автоматизированный комплекс по оцифровке рентгеновских снимков “ТехЭксперт” позволяет с высокой точностью в автоматическом порядке оцифровывать рентгеновские снимки, при этом человеческий фактор ошибки полностью исключается. Помимо того, что значительно ускоряется обработка рентгеновских снимков, она еще проводится достоверно и точно оценивается качество сварных швов. В данном комплексе применяется сертифицированное программное обеспечение “Марс”.

  • Описание

Комплекс позволяет с максимальной точностью автоматизированно расшифровывать рентгеновские снимки, исключая субьективный человеческий фактор оценки параметров снимка и найденных дефектов. Комплекс обеспечивает достоверную оценку качества снимка и сварных соединений и увеличивает скорость обработки снимков за счет совмещения в одном комплексе различных измерительных приборов, используемых при визуальной расшифровке снимков (негатоскоп, денситометр, измерительная линейка, измерительная лупа, шаблон дефектоскописта и т.д.). Аппаратный комплекс базируется на сертифицированном программном обеспечении “Марс”. Комплекс имитирует работу с приборами для визуальной расшифровки и позволяет автоматически сравнивать результаты.

Портативный комплекс расшифровки рентгеновских снимков “ТехЭксперт” выгодно отличается от своих конкурентов мобильностью, что очень немаловажно при работе в полевых условиях.

Комплекс МАРС имеет Сертификат об утверждении типа средств измерений RU.C.27.022.А № 39600 от 01.04.2010 г. и Разрешение на применение Федеральной службы по экологическому, технологическому и атомному надзору №РРС 00-29543 от 23.05.2008 г.

В процессе расшифровки рентгеновских снимков комплексом выполняются следующие функции:

  • снимки вводятся в компьютер с помощью сканера;
  • по снимкам, относящимся к одному стыку, определяется соответствие ГОСТу количества экспозиций и периметр сварного соединения;
  • оценивается взаимное положение эталонов и шва;
  • определяется чувствительность контроля снимков с точностью 0,1 мм;
  • измеряется оптическая плотность изображения шва и эталонов с точностью 0.1 Б;
  • определяется допуск снимков к расшифровке в соответствии с требованиями ГОСТ 7512-82;
  • определяется наличие дефектов, их местоположение и классификация;
  • измеряются геометрические размеры дефектов с точностью 0.1 мм;
  • оценивается соответствие сварного соединения требованиям нормативных документов;
  • формируется протокол по результатам расшифровки;
  • сохраняются данные о снимках и протоколах;
  • кроме расшифровки снимка, комплекс позволяет измерять следующие параметры:
    • размеры объектов на снимке с точностью 0.1 мм;
    • расстояние между объектами с точностью 0.1 мм;
    • оптическую плотность в любой заданной точке снимка с точностью 0.1 Б;
    • относительную высоту точки снимка над уровнем основного металла с точностью 0.1 мм.
  • при архивации снимков без потери информации на дешевых долговременных носителях, имеется возможность проследить динамику развития дефектов сварного соединения в процессе эксплуатации трубопровода.
  • предоставляется возможность просмотра трехмерного изображения снимка, для оценки относительного уменьшения толщины металла.

Базовая комплектация комплекса расшифровки рентгеновских снимков “ТехЭксперт”

  • мощный ноутбук – процессор Intel® Pentium® Dual-Core Processor, жесткий диск от 250 Гб, экран 15,6″ WXGA с технологией светодиодной подсветки, глянцевый, оперативная память от 2048 Mb, DDR3 1066 MHz (Максимум 4Gb)
  • профессиональный сканер рентгеновской пленки – разрешение 2400х4800 dpi и максимальная оптическая плотность оригинала 3.8D, система ручной и автоматической фокусировки, Twain – совместимость, Глубина цвета 48 бит.
  • слайд-модуль
  • Профессиональный лазерный принтер – формат А4, для распечатки протоколов.
  • Программное обеспечение.

Дополнительная комплектация

  • Водонепроницаемый, химически нейтральный, ударопрочный кейс для перевозки оборудования.

Радиографический контроль сварных швов и технология его проведения

Производство и установка сварочных конструкций осуществляется в строгом соответствии со строительными нормами, техническими условиями и правилами, обозначенными в ГОСТе. Все существующие сегодня способы контролировать сварной шов, а также другие металлические изделия дают возможность выявлять всевозможные дефекты, которые можно повстречать на практике сварки.

Соответствующие методы контроля применяются в зависимости от ответственности сварных швов и конструкций. Самыми целесообразными комплексными испытаниями на сегодняшний день считают те, что включают целый ряд параллельно использующихся методов контроля, например, ультразвуковой контроль сварных швов и радиографическая дефектоскопия.

Радиографический контроль и цели его проведения

Рентгеновская дефектоскопия или же радиографический контроль сварочных швов, соединений чаще всего применяется с целью проверки уровня качества магистральных газо- и нефтепроводов, технологических трубопроводов, промышленных трубопроводов, металлоконструкций, а также композитных материалов и технологического оборудования в самых разных отраслях промышленности.

Рентгенографический контроль производят с целью выявления поверхностных и внутренних дефектов, к примеру, шлаковых включений, газовых пор, микротрещин, подрезов и шлаковых включений.

Наряду с другими физическими методами контроля радиографический выступает одним из самых эффективных и надёжных средств выявления всевозможных дефектов. Выявленные дефекты: искусственные включения, нарушения геометрии

Основан данный метод дефектоскопии на различном поглощении рентгеновских лучей материалами.

Такие дефекты, как включения инородных материалов, различные трещины, поры и шлаки проводят к ослаблению в той или иной степени рентгеновских лучей. Регистрация интенсивности лучей при помощи рентгенографического контроля помогает определить не только наличие, а и расположение разнообразных неоднородностей проверяемого материала.

Данный метод показал свой высокий уровень эффективности на практике в процессе контроля качества, которому подвергаются сварочные швы и соединения.

Преимущества рентгенографического метода:

  • Максимально точная локализация даже самых мельчайших дефектов;
  • Молниеносное обнаружение дефектов сварочных соединений и швов;
  • Возможность произведения чёткой оценки микроструктуры: величины вогнутости, выпуклости корня шва даже в самых недоступных местах для внешнего осмотра.

Радиографическая дефектоскопия, контролирующая сварочные конструкции также даёт возможность обнаруживать внутренние дефекты в виде пор, непроваров, вольфрамовых, шлаковых, окисных и других включений, подрезов и трещин, усадочных раковин и прочего.

Согласно общим положениям ГОСТа 7512 82

Радиографический контроль не используют при:
  • Наличии непроваров и трещин, величина раскрытия которых меньше стандартных значений, а плоскость раскрытия не соответствует направлению просвечивания;
  • Любых несплошностях и включениях, имеющих размер в направлении просвечивания меньше удвоенной чувствительности контроля;
  • Всяческих несплошностях и включениях в случае, когда их изображения на снимках совершенно не соответствуют изображениям построенных деталей, резких перепадов трещин металла, который просвечивается, а также острых углов.

Наиболее достоверный способ проконтролировать основной металл и сварной шов – провести дефектоскопию с рентгеновским просвечиванием металлов. Только так можно определить и вид, и характер обнаруженных дефектов, с высокой точностью определить их месторасположение и заархивировать результаты контроля в конечном итоге.

Принцип работы радиографической установки

Радиографический контроль относится, в первую очередь, к системам цифровой дефектоскопии радиационного типа. Радиационное изображение в данных системах превращается в цифровой массив (изображение), который впоследствии подвергается разным видам цифровой обработки, а затем выводится на монитор персонального компьютера в виде полутонового изображения. К слову, нередко металлография (классически метод) использует для исследования, а также контроля металлических материалов радиометрические установки.

Поскольку метод базируется на принципе измерения рентгеновского излучения или гамма-излучения, которое проходит сквозь материал контролируемого объекта, детектором для контроля выступает фотодиод со сцинтиллятором, наклеенным на него. Сцинтиллятор под воздействием излучений испускает видимый свет, выход которого пропорционален квантовой энергии. В конечном итоге исходящее световое излучение вызывает ток внутри фотодиода.

Таким образом, детектор преобразовывает проходящее сквозь контролируемое изделие излучение в электрические сигналы, величина которых прямо пропорциональна интенсивности лучей гамма.

Приёмник излучения рентгена – это линейка сцинтилляционных детекторов, которые по отдельности оснащены собственными усилителями, образующими единый независимый канал с детекторами. Количество детекторов в линейке строго зависит от необходимой ширины контролируемой зоны. Все каналы детекторного блока опрашиваются по очереди, а с помощью АЦП (аналого-цифровой преобразователь) все полученные сигналы приобретают цифровой вид. Впоследствии полученный в ходе опроса детекторных блоков цифровой массив передаётся на ПК. Радиографический контроль трубы

Посредством перемещения детекторных блоков по отношению к контролируемому сварочному соединению получают непрерывно считываемый массив данных, записывающийся в память ПК с целью последующего и более детального исследования, архивирования. Для оперативной оценки качества в лаборатории контроля в реальном времени эти данные выводятся в виде полутонового изображения прямо на монитор.

Для обработки металла резанием необходимо приобрести несколько типов станков. Подробнее о том, как происходит процесс, читайте в этой статье.

Хотите сделать бизнес в сфере металлообработки? О том, какие материалы и оборудование для этого нужно приобрести, читайте по https://elsvarkin.ru/prakticheskoe-primenenie/kak-samomu-sdelat-metallicheskij-karkas-dlya-karkasnogo-doma-i-garazha/ ссылке.

Главные требования к рентгеновским аппаратам

В процессе радиометрическом методе флуктуации интенсивности проходящего сквозь объект энергетического спектра не оказывают никакого воздействия на чувствительность контроля, так как изображение, фиксируемое на пленке рентгена изображение определяют посредством интегральной дозы излучения в период экспозиции.

Именно поэтому во время радиографического контроля разрешается применять рентгеновские аппараты любого существующего типа. В большинстве случаев изготовители рентген-аппаратов не приводят никаких данных о флуктуации интенсивности излучений, поскольку данная величина не является критичной.

Стоит отметить, что радиометрия представляет собой метод измерения при построчном сборе данных в режиме реального времени.

Для сканирования одной строки могут потребоваться десятые доли секунды. Исходя из этого рентген аппарату предъявляются 2 основных требования, а именно:

1) Плотность потока гамма-излучения, проходящего сквозь контролируемую толщину проверяемого объекта, должна быть настолько велика, чтобы этого времени было достаточно для регистрации изменения толщины объекта вдоль просканированной области

2) Интенсивность гамма-излучения обязательно должна быть постоянной

Таким образом, для качественного радиометрического контроля необходимы высокостабильные источники ионизирующего излучения, имеющего максимально возможную плотность лучевого потока, а также максимальный энергетический спектр.

С целью сравнения современных рентгеновских аппаратов панорамного типа с постоянным потенциалом разработан специальный переносной прибор, обеспечивающий проведение измерений интенсивности излучения в полевых условиях.

Виды радиометрических аппаратов:

  1. Аппараты, которые обладают фиксированной частотой флуктуаций интенсивности гамма-излучения. Регулярные перемены интенсивности рентгеновского излучения создают на изображении поперечные полосы. При этом среднеквадратичные отклонения в интенсивности излучения в несколько раз превышают статистические шумы. Возможно ослабление данных флуктуаций программным способом. С этой целью радиометрическую установку оснащают программами, определяющими спектральную долю флуктуаций для каждого аппарата. Подобные рентгеновские аппараты считаются условно применимыми для радиометрического контроля сварочных швов и соединений.
  2. Рентгеновские аппараты с постоянным потенциалом, которые обладают высокочастотными флуктуациями, случайными во времени. У таких приборов величина отклонений интенсивности гамма-излучения более одного процента. В радиометрическом контроле сварочных конструкций не рекомендуется применять такие устройства.
  3. Идеальным вариантом является оборудование, стабильность излучения которого превышает 0,5 процентов, а частота флуктуаций имеет показатель не более 0,1 Гц. Низкочастотные изменения интенсивности излучения столь незначительной величины можно легко устранить на изображении программным способом.

Специалисты рекомендуют рентгеновский программный аппарат модели РПД200П, который после соответствующей модификации системы питания показал, что может успешно применяться в процессе проведения радиометрического контроля высокого качества.

Развивающаяся стремительными темпами вычислительная и электронная техника открывает широкие возможности для удешевления и усовершенствования радиометрической аппаратуры.

Проведённые с помощью аппарата РПД200П панорамного типа измерения доказывают, что на базе оборудования этого типа можно создать целые радиометрические комплексы.

Читать еще:  Способы зачистки сварных швов
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector