11 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Воздушно плазменная резка принцип работы

Что такое воздушно-плазменная резка: принцип работы, преимущества, правила работы

В современных мастерских все чаще вместо всем привычных болгарок применяются аппараты для воздушно-плазменной резки. Установка воздушно плазменной резки позволяет проводить резку, включая фигурную обработку, выравнивание кромок, создание отверстий и проемов, а также проводить сложные по технологии работы. При этом качество реза отменное – не остается неровных кромок, заусенец, не образуется окалина. Аппараты могут с успехом использоваться как при резании металлических изделий, так и не металлических предметов – бетона, керамики, пластика и т.п.

Важной особенностью будет то, что при обработке не возникает деформаций, так как нагрев местный (в зоне резки). Также немаловажным фактом будет простота работы на устройстве (плазморезе). С ним способен разобраться даже новичок. Однако для того, чтобы качество результата оправдало ожидания, желательно изучить устройство плазмореза и технологию работы с ним.

Для более опытных домашних мастеров мы предлагаем инструкцию по сборке плазмореза своими руками.

Суть процесса

Принцип технологии заключается в том, что обрабатываемая заготовка локально интенсивно нагревается сжатой дугой. При этом расплавленный металл удаляется из обрасти резки потоком плазмы, подаваемой из плазмотрона.

Современные плазморезы могут работать по одной из двух схем:

  1. Подача плазменной дуги.
  2. Подача плазменной струи.

Изучение процессов и практика применения показали, что плазменно-дуговая резка характеризуется большей эффективностью, так как наибольшая мощность формируется за пределами наконечника. По этой причине этот метод более активно используется при разрезании металлических деталей. Плазменная струя не очень распространена и при этом активнее при обработке не металлических изделий.

Основной рабочей частью является плазмотрон, состоящий из электрода (катода), сопла и изолирующей части меж ними.

Плазмотрон для ручной воздушно плазменной резки – это дуговая камера цилиндрической формы с выходным каналом небольшого диаметра, формирующий сжатый плазменный поток. Чтобы разжечь плазменный поток применяется электрод, размещаемый, как правило, на задней стенке дуговой камеры.

Плазмообразующей средой является подаваемый в дуговую камеру рабочий газ. После того, как газ поступает в зону действия дуги, происходит образование плазмы. При этом образовавшийся плазменный поток служит стабилизатором дугового заряда. Благодаря подаваемому газу и диаметру формирующего канал происходит ограничивание сечения размера дуги, т.е. она сжимается. В свою очередь сжатие приводит к увеличению температуры плазменного потока до 20 000 градусов. Скорость потока, выходящего из плазматрона, может достигать 2 – 3 км/с. Мощность – до 10 Вт/см.

Важно отменить, что в этом температурном диапазоне электропроводность плазмы становится близкой к проводимости металлической детали.

Технология предполагает использование различных электродов – из бериллия, тория, гафния или циркония. Именно эти металлы в рабочей среде позволяют создавать на поверхности электрода особые тугосплавные оксиды, которые защищают его от преждевременного разрушения. Однако другой стороной использования подобных металлов является их токсичность.

Основным отличием от газокислородной резки является то, что она не выделяет большое количество тепла. При этом также необходимо некоторое время для прогрева места резки. Воздушно-дуговой резак за счет высоких температур и скорости плазменного потока позволяет выполнять резку практически моментально.

Разновидности плазменной резки

Исходя из типа используемой рабочей среды, можно выделить 3 типа технологии плазморезания:

  • Простая – применяется лишь воздух/азот и электроток.
  • С задействованием защитных газов – плазмообразующего и защитного, сохраняющего зону резания от влияния окружающих факторов. Итогом становится заметное улучшение качество кромок.
  • С применением воды, которая имеет аналогичное газу назначение – защитное. Помимо этого лучше охлаждаются элементы плазмотрона и поглощаются токсичные газы.

Благодаря защитным средам воздушно дуговая резка металла не только в разы повышает производительность производства, но и увеличивает степень пожаробезопасности, так как используемые материалы безопасны.

Применяемые газы и их особенности

Воздушно плазменная резка металлов может осуществляться с применением одного из видов газа. Условно их возможно разделять на защитный и плазмообразующий.

В быту, т.е. толщинах металла до 50 миллиметров и силе тока до 200 А в чаще всего применяется сжатый воздух, используемый как в защитных, так и плазмообразующих целях. В промышленности применяются другие газы и смеси с содержанием кислорода, азота, аргона, гелия или водорода.

Характер плазмообразующей струи определяет качество и скорость резания, а также нюансы химико-физических процессов на обрабатываемых кромках. Вышеназванные газы и смеси могут использоваться для обработки почти всех металлов. Однако существуют исключения, когда их работа не допустима. К примеру, при резании титана нельзя применять азот, водород и смеси их содержащие.

Применяемое оборудование

Для осуществления плазменной резки используются различного типа аппараты. Источником тока могут выступать различные приспособления, включающие в себя трансформаторы, реле, осцилляторы.

Для бытовой резки вполне подходят небольшие, компактные модели, которыми можно разрезать детали с толщиной до 12 миллиметров. В промышленности используются более габаритные установки со значительной мощностью и другим напряжением, способные разрезать изделия до 100 миллиметров. Все обладают схожим принципом действия и отличаются лишь своими габаритами и номинальной мощностью.

Основной рабочий орган – плазмотрон – во всех плазморезах имеет одинаковое устройство с разницей лишь в размерах. Имеется рукоятка с кнопкой пуска, стержневой электрод (в качестве катода) и внутреннее сопло (в качестве анода), меж которых и возникает дуга. С помощью завихрителя потока направляется сжатый воздух и повышается температура. Благодаря изолятору происходит защита внешних частей от перегрева и контакта электродов. Наружное сопло выбирается исходя из предполагаемой толщины разрезаемой заготовки. Наконечник защищает сопло от летящих расплавленных металлических брызг. Воздух подается по шлангу, а давление регулируется с помощью клапана.

Преимущества использования плазморезов

Принцип действия аппаратов воздушно-плазменной резки обеспечивает ряд достоинств перед иными технологиями разделки металла:

  • Обработка любой стали, в том числе с высокими коэффициентами теплового расширения.
  • Резка диэлектриков.
  • Повышенная скорость резания.
  • Простота работы.
  • Возможность выполнения фигурных резок.
  • Высокая точность.
  • Отсутствие необходимости последующей обработки кромок.
  • Минимальное загрязнение.
  • Малый размер и масса аппарата.

Правила применения аппаратов

Для начала продувается плазмотрон сжатым воздухом, удаляя остатки конденсата и загрязнения. Затем поджигается электродуга, т.е. нажимается и отпускается кнопка поджига дуги. Аппарат при этом запускает режим продувки. После 30 секундной паузы возможно нажать и удерживать кнопку розжига. В промежутке меж наконечником сопла и электродом возникает дежурная дуга. Продолжительность ее горения около 2 секунд. В это время должна автоматически разжигаться рабочая дуга. При этом важно удерживать плазмотрон как можно ближе к металлу, но не касаться его поверхности.

После возгорания рабочей дуги должно произойти погасание дежурной. В это время сопло должно подавать воздушно-плазменный поток, которым можно проводить непосредственно резание. Если сразу рабочая дуга не разгорелась, весь процесс нужно повторить сначала.

Рабочая дуга может не разгореться по следующим причинам:

  • Низкое давление сжатого воздуха.
  • Ошибки при сборке и настройке плазмотрона.
  • Иные сбои и неполадки в системе.

Не редко происходит погасание рабочей дуги в процессе разделывания. Происходит это из-за нарушения необходимого расстояния меж поверхностью детали и плазмотрном, а также когда наблюдается полный износ рабочего электрода.

В работе также необходимо иметь в виду угол, под которым осуществляется резка. Его необходимо выдерживать строго 90 градусов относительно поверхности металла. Исходя из типов материалов и технологий резки, воздушно-дуговой резак можно отклонять на10 – 50°, но обосновано. Иначе разделывание с отклонением угла может приводить к деформациям металла.

Меры безопасности

Технология воздушно-плазменной резки имеет определенные опасности – влияние тока, повышенной температуры, горячей окалины и ультрафиолета. Поэтому следует соблюдать определенные правила безопасности:

  • Работу выполнять в соответствующей экипировке – защитные очки/сварочный щиток, в плотных перчатках, в плотной одежде и в закрытой обуви. Также возможно образование вредных газов, поэтому может потребоваться респиратор.
  • Включать в сеть аппарат через устройство защитного отключения (УЗО).
  • Обеспечить надежное заземление рабочего стола, розетки.
  • Не допускать работу с поврежденной изоляцией рабочих силовых кабелей.

Если соблюдать элементарные правила безопасности, то избежать травм и профессиональных заболеваний не составит труда.

Воздушно плазменная резка принцип работы

Воздушно-плазменная резка металлов

Воздушно-плазменная резка металлов – это один из видов обработки материала, при котором в качестве режущего инструмента используется плазменная дуга. Принцип работы заключается в том, что между электродом и соплом аппарата возникает электрическая дуга, после чего в плазмотрон подаётся воздух под давлением порядка 0.5 МПа и воздух проходя через электрическую дугу преобразуется в состояние плазмы. Воздушно-плазменная резка является достаточно быстрым способом резки различных металлом, как чёрных, так цветных и тугоплавких, сплавов с различной толщиной.

Принцип работы плазмореза заключается в разрезании путём целенаправленного локального нагрева участка заготовки. Для осуществления данной операции используется установка – плазморез – это специальная машина со специальной насадкой – плазматроном (генератор плазмы) – это такое техническое устройсво, через который при протекании электрического тока через разрядный промежуток образуется плазма, он содержит в себе электрод и в него же подаётся пламообразующий газ, как правило, сжатый воздух. В зависимости от тока реза, образуется плазма с разной температурой и, соответственно, от этого зависит маскимальная толщина реза. То есть, по сути, основополагающей характеристикой плазмореза является конечная велечина толщины реза. Толщина также зависит от разрезаемого материала. Значительные отличия имеют такие частообрабатываемые металлы, как сталь, алюминий и медь. Отличия обусловлены теплопроводностью, чем выше, тем хуже режется.

Читать еще:  Безогневая резка трубопроводов

В силу того, что нагрев металла при плазменной резке локальный и быстрый, т.е. успевает нагреться только та часть, на которую подаётся сжатый воздух, остальной металл не успевает нагреться, это позволяет избежать термических преобразований и деформаций заготовки. При резке плазморезом получается достаточно аккуратный рез. Также немаловажным является возможность резать по любой траектории.

Виды установок для воздушно-плазменной резки:

Как и в сварке, существует 2 вида плазморезов:

Трансформаторы, как правило, более массивные и не предназначены для резания металла толщиной более 40 мм, в том числе, и в силу того, что он будет не мобильным, будет потреблять много электроэнергии и просто неудобен в использовании, его крайне проблематично применять на высоте и в стеснённых условиях. Поэтому, подобный аппарат для воздушно-плазменной резки всё менее и менее популярен.

2) Инвертор для плазменной резки

Инверторы плазменной резки металла более совершенны, намного меньше в размерах по сравнению с трансформаторами, мобильны и могут использоваться для работ в ограниченном пространстве, с более высоким КПД, потребляющие меньше электроэнергии и имеющие стабильное горение дуги. Современный инвертор плазменной резки позволяет быстро и качественной разрезать металл почти что любой толщины. Практически каждый современный плазморез инверторный. Такая установка воздушно-плазменной резки наиболее популярна.

Также плазморезы бывают контактного и бесконтакного типа. Контактные – для получения рабочей дуги необходимо короткое замыкание, возникающее при блокировании подачи воздуха, т.е. изначально горит дежурная дуга, после нажимается кнопка и подача воздуха блокируется, таким образом контакт замыкается, после автоматического ткрытия клапана потоком воздуха искра выводится из сопла и между отрицательно заряженным электродом и положительно заряженным металлом возникает плазменная дуга.

Бесконтактные – это, как правило, плазморезы, выходная сила тока которых превышает 50 А (осциляторы или высокочастотные зажигатели). Дежурная дуга, возникающая между электродом и соплом, имеет высокое напряжение и частоту тока, а при приближении сопла к обрабатываемому металлу образуется рабочая дуга.

Плазморез может иметь воздушное охлаждение, жидкостное и воздуно-жидкостное.

В сравнении с газовой резкой, плазма даёт более высокую скорость работы, качество и аккуратность реза, возможность резки по сложным траекториям.

Преимущества плазменной резки:

В отличии от газовой резки, плазмой металл режется быстрее, чем кислородом, не требуется предварительный подогрев металла, ширина разреза очень небольшая, а также, меньше зона термического влияния, поэтому разрезаемый металл не деформируется и не закаливается.

Способ плазменной резки можно использовать для большинства металлов (газовой резкой нельзя резать, нержавеющую сталь, алюминий, медь). Строгих требований к качеству поверхности нет – она может иметь следы ржавчины, загрязнений и пр. Кроме того, плазменная резка более чистый, дешевый и удобный способ, так как для плазменной резки используются в качестве исходных материалов сжатый воздух и электричество.

Оборудование плазменной резки более безопасно, чем оборудование газовой резки (конечно, если правильно подключить, но и даже в этом случае безопаснее), так как в этом случае в горелке не возникает опасность обратного удара пламени.

Способ плазменной резки превосходно подходит для проплавления отверстий, так как сжатая плазменная дуга концентрированно нагревает и плавит металл в месте разреза и в то же время интенсивно, благодаря воздействию скоростного потока газа удаляет расплавленный металл.

Где применяется воздушно-плазменная резка и что можно делать:

Воздушно-плазменная резка позволяет резать любой электропроводящий материал. По сравнению с флюсовой, газовой резкой, плазменная резка имеет много преимуществ: можно резать любой металл, выполнять подготовку кромок, выполнить фигурную резку, строжку и проплавление отверстий.

Плазменная резка металла даёт возможность резать металл разнообразной толщины. В зависимости от мощности плазморез может разрезать как алюминий, так и нержавеющую или углеродистую сталь, а также титан толщиной несколько сантиметров.

Устройство плазменного резака или плазмотрона:

Плазменный резак или по-другому плазмотрон, а также называемый плазменной горелкой предназначается для образования плазмы при резке металла. Они используются как для ручной, так и механизированной плазменной резки.

В комплект резака входят следующие узлы: сопло, электродержатель с электродом, дуговая камера, изолятор, который разделяет электродный и сопловый узлы, системы водо- и газоснабжения.

Устройство резака для плазменной резки будет зависеть от рабочей среды, зажигания среды, системы охлаждения и других факторов. Самые простые виды плазмотронов – для инертных и восстановительных газов, их подавляющее большинство. Самые сложные, с водяной и магнитной стабилизацией, но таковые используются крайне редко.

Резаки с газожидкостной стабилизацией дуги комплектуются системой каналов для подачи воды в столб дуги в сопловом узле. Для стабилизации дуги при используются двухфазные газожидкостные потоки, которые вводятся по двухпоточной схеме. Такой способ стабилизации повышает режущие свойства плазменной дуги, а за счет подачи жидкости в формирующее сопло улучшается его охлаждение.

Также активно используются плазмотроны с водяной завесой и газожидкостной системой охлаждения. Они также укомплектованы системой водяных каналов, которые создают завесу вокруг дуги. Вода охлаждает кромку металла и улучшает условия и качество плазменной резки таким плазмотроном.

Сопло плазменного резака формирует дугу, разрезающую металл. На свойства дуги будут влиять форма и размеры соплового канала. Уменьшая диаметр сопла и увеличивая его длину, вы получаете поток плазмы высокой скорости и отличные условия резки.

Как работать плазморезом и что для этого нужно:

При подготовке оборудования к работе в систему плазмореза подается сжатый воздух. Возможны три источника сжатого воздуха: баллоны сжатого воздуха, подключение к имеющейся на заводе системе сжатого воздуха или небольшой воздушный компрессор. Некоторые маломощные инверторы плазменной резки, не требуют подключения к внешнему источнику сжатого воздуха, так как оснащаются встроенным компрессором. Стоит отметить тот факт, что в любом случае необходимо, чтобы воздух был сухим, а значит надо использовать систему подготовки воздуха, дабы избежать образования конденсата.

При подборе необходимого тока и скорости резки лучше всего выполнить несколько разрезов при более высоком токе. Затем, при необходимости, в зависимости от скорости резки, можно уменьшать ток. Если ток очень высокий или скорость резки недостаточная, разрезаемый металл будет перегреваться и может образоваться окалина. Правильно подобрав скорость резки и ток, мы получаем очень чистый разрез, на поверхности которого почти не образуется окалины, мало или абсолютно не деформируется разрезаемый материал.

Принцип работы плазмореза заключается в том, что резку начинают, располагая плазматрон как можно ближе к краю разрезаемого основного металла. Нажмите кнопку выключателя плазматрона — зажжется дежурная дуга, а затем режущая дуга. После зажигания режущей дуги медленно двигайте плазматрон вдоль планируемой линии разреза. Регулируйте скорость движения так, чтобы искры были видны с обратной стороны листа металла. Дуга должна быть направлена вниз и под прямым углом к поверхности разрезаемого металла. Если на обратной стороне металлического листа не видно искр, это значит, что металл не прорезан насквозь. Такое может происходить из-за слишком большой скорости движения, недостаточного тока или из-за того, что струя плазмы направлена не под прямым углом к поверхности разрезаемого материала.

По окончании резки слегка наклоните плазматрон в сторону конца разреза или временно остановитесь, чтобы закончить резку. После того, как вы отпустили кнопку выключателя на плазматроне, некоторое время будет подаваться воздух для охлаждения его нагревающихся частей, и в случае необходимости резку можно снова возобновить.

Теория плазменной резки, принцип работы, применение

Воздушно-плазменная резка широко применяется для работы с различными металлами, являясь эффективной и экономичной альтернативой другим способам обработки — механизированной или резкой в инертном газе.

Основными преимуществами воздушно-пламенной резки является простота и дешевизна эксплуатации, поскольку плазмообразующим элементом является воздух. Стабильность процесса обеспечивает низкую степень деформации металла, что повышает качество его обработки.

Резка металла по данной технологии осуществляется потоком плазмы – газа, состоящего из частиц, несущих электрический заряд. Плазма получается при нагреве любого газа, в том числе воздуха до очень высоких температур, которые в средней части сварочной достигают 30 000 ºС, чего вполне достаточно, чтобы мгновенно расплавить любой металл. Для воздушно-плазменной резки применяется оборудование, работающее на принципах постоянного тока с прямым действием. Электрод выполняет роль катода, а поверхность разрезаемого металла представляет собой анод, между ними и возникает дуга с плазмой. Под воздействием температуры разрезаемый участок металла расплавляется и выдувается, па при движении резака в материале образуется полость. При включении резака осциллятор запускает вспомогательную дугу, расположенную между соплом и электродом, рабочий ток в ней достигает значений 25-60 А, что зависит от мощности устройства. В результате получается факел длиной до 40 мм, при касании которого к металлу, возникает уже более мощная рабочая дуга, с дополнительной подачей воздуха. Вспомогательная дуга при этом выключается. Ионизированный газ за счет резкого расширения, выходит из сопла со скоростями, близкими к звуковым, что позволяет легко резать даже самые тугоплавкие металлы. В плазмотроне прямого действия режущая дуга восстанавливается напрямую между электродом и металлической поверхностью. Эти устройства обладают высоким КПД, поскольку мощность передается непосредственно разрезаемой поверхности. Плазмотрон косвенного действия работает от дуги, возбужденной между электродом и соплом, а газ выносится наружу после нагревания внутри сопла. Преимуществом этих плазмотронов является возможность резки и пайки неметаллических материалов, поскольку для ее работы не требуется проводящая поверхность.

Читать еще:  Что называется резкой металла?

Оборудование для воздушно-плазменной резки, благодаря универсальности технических характеристик, может использоваться не только для разрезания, но и для прогрева, а также сваривания различных материалов, как металлов, так и непроводящих ток материалов, таких как стекло или керамика. Плазменная резка производится в ручном или автоматическом режиме в различных технологических процессах, например, при производстве эллиптических днищ ГОСТ 6533-78, применяемый в емкостном оборудовании и трубопроводах. Причем при толщине металла до 2 мм, плазменная резка автоматически выполняет отбортовку кромок. Высокая точность позволяет производить раскройку металла исключительно точно, что повышает качество изделий и уменьшает количество отходов. Воздушно-плазменные резаки применяются и для сварки различных материалов, в том числе неметаллических. Плазменная сварка позволяет сваривать материалы толщиной 15 мм, не применяя технику скоса кромки. Такой тип сварки относится к высокопроизводительным, он позволяет сваривать различные типы швов, в том числе угловые и стыковые, а также, благодаря гибкости настроек, работать с материалами толщиной до 1 мм. Кроме воздуха в плазменных резаках могут использоваться водород, азот, а также смеси на основе инертных газов, как правило, аргонные. Для воздуха применяются гафниевые и циркониевые электроды, с системой водяного охлаждения.

Плазменная резка металла: что это такое, принцип и схема работы резака

В области металлообработки имеет весомое значение плазморез, о нем мы и расскажем: что это такое – воздушно плазменная резка металла, принцип работы, дополнительно покажем видео и фото.

Что это за метод

Его отличие в скорости разреза. Если классическое пламя, основанное на пропане и кислороде, с невысокой температурой горения. Указанный способ работает по принципу усиления электродуги под высоким давлением. В результате тепло не успевает распределиться по всей заготовке, а она – деформироваться.

Особенность – дуга плазмотрона является не только резаком. Она позволяет и производить сварочные работы, если будет использована присадочная проволока.

Разновидности плазморезов

Особенность разных типов – в способе розжига дуги и ее поддержания. В классическом варианте она образуется между соплом и деталью. Но если материал не имеет способности проводить ток, то ионизированная электродуга возникает между катодом и анодом и держится на постоянной основе. Отдельно стоят приспособления, использующие пар от жидкости (она находится в резервуаре), который усиливает давление и заменяет эффект ионизирующего вещества.

Виды и принцип плазменных резаков

В основном выбор зависит от сферы использования – какие металлы предстоит разрезать, ширина заготовок, требования к срезу, теплопроводность материала и прочие параметры. Разновидности:

  • Инструменты, которые работают в среде инертных газов, – они являются восстановителями.
  • Дополняются окислительными парами и насыщены кислородом.
  • Технологии, работающие на основании смесей.
  • Работа происходит в среде газожидкостных веществ.
  • Водная или магнитная стабилизация – редко используется.

Из вышеперечисленных приборов самой распространенной основой являются инертные газы, например, аргон, водород, азот, гелий. В зависимости от толщины металла используют аппараты на инверторе или трансформаторе. Также они различаются по наличию контакта между резаком и заготовкой или по бесконтактному способу.

Исходя из мощности и предназначения, есть бытовые устройства и промышленные. Первые работают от стандартной сети с напряжением в 220 В, а вторые подключаются к 380 В.

Устройство плазменной резки

Уже в названии понятно, что главный элемент, оказывающий воздействие, – это плазма, которая состоит из ионизированного газа под давлением с высокой электропроводностью. Чем выше температура, тем сильнее проводимость, а значит, и скорость процедуры. Конструктивно прибор состоит из нескольких частей, как показано на схеме:

Источник электропитания

Энергию может подавать трансформатор или инвертор. Первый очень надежный, фактически нечувствительный к перепадам тока, а также может применяться по отношению к толстым металлическим брускам до 80 мм. К минусам можно отнести увеличенный вес и большую стоимость, не очень высокий КПД, поэтому прибор сложно назвать экономным. Обычно применяется на производстве при необходимости металлообработки крупных заготовок.

Инвертор имеет лишь один относительный минус – им нельзя резать материал более 40 мм в ширину. Зато есть масса плюсов:

  • стабильное горение электродуги;
  • высокая эффективность, на 30% больше экономии;
  • легкость;
  • компактность и мобильность.

Что такое плазменный резак или плазмотрон

Это основной узел, инструмент, с помощью которого через сопло подается плазма. От диаметра и длины отверстия зависит поток и, как результат, качество среза. Внутри находится электрод, он изготавливается из редких материалов с очень высокой прочностью и температурой плавления – бериллий, гафний или цирконий. Они при нагреве создают тугоплавкий оксид, который защищает целостность режущей кромки. Также есть охладитель с подачей воздуха и колпачок. Подробнее на схеме:

Компрессор

От этого элемента зависит то, как работает плазменный резак, – равномерно или с перебоями. В компрессионном устройстве содержится воздух, который подается в определенном объеме тангенциальной или вихревой струей. Если это не будет сделано, возможен нестабильный розжиг дуги, образование двух электродуг одновременно или полный выход плазмотрона из строя.

Схема работы плазмореза

Инженер нажимает на кнопку запуска, включается подача электричества, автоматически зажигается первая пробная дуга. Она еще не имеет достаточную температуру для соединения. Затем воздух начинает поступать на сопло через компрессор в сжатом виде, ионизироваться, становясь проводником электроэнергии, что в обычных условиях без ионной обработки противоестественно для кислорода.

Через узкое отверстие сопла начинает выходить поток плазмы. Нагрев газа увеличивается до 30 тысяч градусов, поэтому луч начинает проводить электричество также хорошо, как и металл. При соприкосновении дуги с заготовкой происходит разрез, который моментально обдувается для охлаждения.

Принцип работы плазмореза и скорость плазменной резки

Когда термообработанный кислород обогащается ионами и выходит через сопло, его ускорение достигает 2-3 тысяч метров в секунду. Этот параметр справедлив при условии узкого отверстия не более 3 мм. При такой быстроте передвижения веществ молекулы еще сильнее разогреваются. Такого жара хватает для плавки даже тугоплавких металлов. Чем меньше эта характеристика у материала, тем быстрее и с меньшими деформациями происходит процесс.

Особенности технологии

  • Толщина заготовок – до 220 мм.
  • Обрабатываются любые металлические вещества.
  • Скорость первичного потока при начальной дуге обычно составляет 800 – 1500 м/с.
  • Чем уже сопло, тем больше ускорение потока.
  • Проплав очень точный, точечный.
  • Область возле разреза остается фактически не нагретой.

Есть два подвида процедуры в зависимости от замыкания проводящего контура.

Как работает резка плазменной струей

Металл не является замыкающим элементом, он находится между двумя сторонами – анодом и катодом. Принцип используется в том случае, когда обрабатываются неметаллы и вещества с низкой электропроводностью, то есть диэлектрики. Плазма образуется между электродом и наконечником, а заготовка просто находится между двумя полюсами.

Плазменно-дуговая резка

Используется, когда нужно разрезать металлическую плашку, которая имеет высокую токопроводимость. Это позволяет разжигать электродугу между проводником и образцом для резки. При этом образуется струя. Плазмообразование происходит при содействии кислорода под высоким давлением и ионизирующего газа.

Обрабатываемая зона резги начинает плавиться и капли выдуваются вниз, образуя отверстие, ровный срез. Применяется постоянный ток прямой полярности.

Виды и технологии плазменной резки

Различают три технологических подхода в зависимости от среды, в которой проходит процедура:

  • Воздух или азот в сочетании с электричеством. Самый простой аппарат.
  • Два защитных газа, которые оберегают область воспламенения от воздействия окружающих веществ. Благодаря этому, появляется максимально чистая атмосфера – в этом пространстве будет очень ровный срез.
  • С водой. Жидкость одновременно имеет две функции – защитную и охлаждающую. Применяется не со всеми металлами, так как некоторые из них вступают в химическую реакцию или быстрее после такой металлообработки окисляются.

Особенность всех трех типов в применении безопасных, пожаробезопасных материалов.

Как выбрать плазменный резак

Основное условие для выбора – назначение. При домашнем использовании удобнее инверторный источник питания. Также важен такой параметр, как сила тока – от нее зависит скорость работы. При выборе пользуйтесь таблицей:

Плазмотрон для воздушно-плазменной резки: виды, принцип работы, критерии выбора

Сегодня вместо классических болгарок и газовых резаков крупные заводы и даже мастерские чаще применяют плазмотрон для производительной воздушно-плазменной резки. Он представляет собой высокотехнологичный аппарат, при помощи которого можно качественно и быстро выполнять раскрой металла разных марок толщиной до 100 мм и больше.

Особенности воздушно-плазменной резки

Воздушно-плазменная резка является техпроцессом, при котором плазмотрон создает поток высокотемпературной плазмы, расплавляющий металл и выдувающий его из зоны реза. Технология заключается в создании плазменной дуги направленного воздействия с помощью электрического разряда в газовой среде.

Схема процесса воздушно-плазменного раскроя

По сравнению с конкурентным способом резания (газокислородным) плазменная резка отличается рядом преимуществ:

  • Повышенная производительность – достигается за счет более высокой скорости прожига обрабатываемого материала, скорости реза и быстрому отключению резака.
  • Высокое качество резки – на кромках практически не образуется окалина, нет наплывов и грата.
  • Минимальные затраты на производство – обеспечиваются за счет отсутствия (в большинстве случаев) операций по дополнительной подготовке кромок, большего количества вырезаемых заготовок за единицу времени.
  • Простота использования – нет необходимости вручную настраивать подачу газа и постоянно следить за расстоянием между соплом и металлом (для этого есть специальные приспособления).
  • Универсальность – эта технология применяется для раскроя металлов различных марок и толщины.
  • Точные геометрические размеры вырезаемых заготовок – достигается благодаря малой ширине реза (до 2,5 мм), минимальной зоне термического влияния, что исключает деформацию деталей даже при работе с тонколистовым металлом.
Читать еще:  Сверла для боковой резки

Принцип работы воздушно-плазменного устройства

Принцип его работы основан на формировании потока ионизированного газа с квазинейтральными свойствами – плазмы. Перенос плазменной дуги на обрабатываемый материал происходит при соприкосновении наконечника (сопла) с металлом.

Сам процесс раскроя начинается при включении кнопки розжига, после чего от источника питания на плазморез подается высокочастотный ток и возбуждается дежурная дуга. При этом ее температура достигает значений 6000-8000 °C. Через несколько секунд в камеру плазменного резака подается воздух под определенным давлением, который при прохождении через дежурную дугу ионизируется, а затем нагревается и увеличивается в объеме. За счет зауженной формы сопла воздух обжимается, что обеспечивает формирование высокоскоростного потока плазмы.

Процесс воздушно-плазменной резки металла

При соприкосновении плазмы с металлическим материалом (анодом) зажигается рабочая (режущая) дуга, которая воздействует на материал локально, нагревая его до температуры плавления и выдувая из зоны резания высокоскоростным потоком плазмы.

Плазмотрон для воздушно-плазменной резки позволяет резать металл разных видов (черный, нержавеющий, цветной) толщиной до 100 мм. С его помощью можно выполнять как фигурный, так и прямолинейный раскрой. Таким аппаратом можно разрезать трубы, профильный и листовой прокат.

Вырезание фигурных заготовок аппаратом для воздушно-плазменной резки

Основные типы оборудования и виды аппаратов для ручной резки

Устройства для воздушно-плазменной резки можно условно разделить на несколько видов:

  • Трансформаторные – мощные установки, которые обычно используются в промышленных целях (для резания больших толщин на протяжении длительного времени).

Аппарат трансформаторного типа

  • Инверторные – компактные и легкие аппараты, позволяющие резать металлопрокат толщиной до 20 мм (в зависимости от мощности). При этом, чем мощнее оборудование, тем оно габаритнее и тяжелее. Чаще применяется для частных нужд, в небольших мастерских и на участках, где плазменная резка не является основных технологическим процессом. Отличается повышенным КПД и небольшим энергопотреблением.

Устройство инверторного типа

Также оборудование классифицируется по назначению, уровню автоматизации и другим параметрам. Выпускаются специализированные устройства для раскроя труб, портативные (переносные) установки, портальные и консольные машины, металлургические (для резки слябов и блюмов), станки с ЧПУ.

Критерии выбора аппарата

Для выбора подходящего по всем параметрам плазмотрона для воздушно-плазменной резки нужно знать разновидности разрезаемых материалов, градацию толщин и интенсивность эксплуатации аппарата. Частные мастера и небольшие фирмы обычно покупают инверторы, поскольку они компактные, более экономичные и производительные.

Основные параметры устройств, которые надо брать во внимание:

  • Рабочий ток – от него напрямую зависит максимальная толщина резки. Поэтому нужно определиться с разновидностью обрабатываемого металлопроката и его толщиной. При выборе стоит учитывать, что производители в характеристиках указывают максимальную толщину черного металла. Так для резки стандартной низкоуглеродистой стали толщиной 1 мм требуется 4 А, а для раскроя цветных металлов – 6 А. Также обязательно должен быть запас мощности для более качественного реза.
  • Продолжительность включения (ПВ) – определяет интенсивность загрузки аппарата или непрерывное время его работы. Измеряется в процентах, которые отображают максимальное время его работы в течение 10-минутного рабочего цикла. Если в характеристиках указано ПВ 40 %, это означает, что он сможет работать 4 минуты, а остальные 6 минут ему нужно остывать во избежание перегрева и выхода их строя. У промышленного оборудования ПВ может составлять 100 %.

Бренды

Сегодня аппараты для воздушно-плазменной резки выпускают разные производители. Однако лучшее соотношение цены и качества оборудования предлагает компания ПУРМ. Она разрабатывает и производит недорогие устройства разных видов и назначения, которые рассчитаны на интенсивную эксплуатацию в тяжелых промышленных условиях.

В ассортименте отечественного производителя ПУРМ есть плазмотроны трансформаторного и инверторного типа с разной мощностью и продолжительностью включения. Особым спросом пользуется мощное оборудование для производственных целей, но и компактные инверторы довольно популярны – особенно среди небольших фирм, специализирующихся на металлообработке и изготовлении металлоконструкций.

Как правильно пользоваться аппаратом?

Аппарат для воздушно-плазменной резки требует наличия знаний и навыков работы с ним, поскольку считается оборудованием повышенной опасности. Во избежание получения травм и профессиональных заболеваний нужно работать в спецодежде – брезентовый костюм, перчатки, закрытая обувь, темные очки или маска (рекомендуемый класс затемнения 4-5).

Экипировка рабочего, выполняющего воздушно-плазменную резку

Аппарат надо устанавливать в местах с открытым доступом воздуха (для эффективного охлаждения – т.е. нельзя располагать вплотную к стенам или другим предметам) на небольшом удалении от места работ, во избежание попадания капель расплавленного металла. Обязательный элемент в конструкции плазмореза – масловлагоотделитель, предотвращающий попадание масла и влаги в камеру плазмотрона.

Качественная поверхность реза с минимумом окалины достигается при условии правильного выбора рабочих параметров для резки конкретного металла определенной толщины – силы тока, а также скорости перемещения резака.

В начале процесса плазмотрон требуется продуть воздухом с целью удаления конденсата и возможных инородных частиц путем нажатия и отпускания кнопки розжига – т.н. режим продувки. Затем можно возбуждать дугу. В ходе резки важно поддерживать постоянное расстояние между инструментом и металлической заготовкой, что обеспечит качественный рез, оптимальную ширину резания и минимальную зону термического влияния. Для облегчения этой работы производители предлагают специальные приспособления – упоры.

Специальные упоры для облегчения ведения плазмореза в процессе резки

Плазмотрон при резании надо держать перпендикулярно обрабатываемому материалу, но при необходимости угол отклонения может составлять от 10 до 50°. Например, резать тонколистовой металл рекомендуется с небольшим уклоном во избежание чрезмерного нагрева и последующей деформации вырезаемой детали.

Воздушно-плазменная резка металла

Сегодня существует множество способов нарезки металла, но если для обычной жести достаточно всего лишь специальных ножниц, то для более широких листов уже требуется специальное оборудование. Ещё совсем недавно подобные инструменты стоили очень дорого, а сейчас их позволить себе может каждый, кто желает упростить и автоматизировать процесс резки металла.

При работе со сталью и другими твёрдыми металлами на производствах уже более сотни лет огромной популярностью пользуется газовая сварка, сейчас же её стремительно вытесняет более современная разработка – воздушно плазменная резка.

Область применения и назначения. Ручная воздушно-плазменная резка используется для раскроя металла относительно большой ширины. Появившись на производствах примерно пятьдесят лет назад, этот тип резки не приобрёл особой популярности из-за больших экономических трат на дорогие газы, при помощи которых и осуществлялась резка. Более того, первые установки воздушно-плазменной резки были очень громоздкими и тяжёлыми, что также ограничивало их область применения. Сейчас же с развитием технологии и использованием при резке гафниевых и циркониевых электродов, благодаря которым относительно дорогие газы были заменены на просто сжатый воздух, воздушно-плазменная резка становится всё более востребованной на самых различных производствах и в строительстве. Также уменьшив габаритные размеры установок, увеличив производительность и снизив энергопотребление, разработчики начали выпускать такие плазмотроны, которые по стоимости и затратам на обслуживание стали в один ряд с газовыми полуавтоматами.

Виды установок. Определяющими характеристиками при подборе инструмента для воздушно-плазменной резки служат мощность устройства и максимально допустимая толщина металла для резки.

Самыми распространёнными на отечественном рынке являются так называемые аппараты « плазменной резки CUT40» с резаками РТ31. Работая от обычной розетки (220 вольт), они могут резать металл толщиной до 12-ти миллиметров, чего вполне достаточно для реализации большинства производственных задач. Среди всего многообразия моделей этого класса как самую надёжную следует выделить PowerMax 125.

Для более ответственного, сложного и интенсивного промышленного использования необходимо использовать другие ощутимо более мощные аппараты воздушно-плазменной резки, которые могут весить несколько сотен килограмм, но при этом разрезать металл толщиной до 80-ти миллиметров. В этой категории на рынке можно выделить модель Jäckle Plasma CUTTER 300. Резаки этой категории часто оснащаются жидкостным охлаждением.

Технологический процесс и отличительные особенности. Принцип работы установки воздушно-плазменной резки схож с газовыми установками. Только тут вместо горящего газа под давлением на заготовку подаётся сжатый воздух. Далее, превращаясь в плазменную струю, он буквально « выдувает» металл из зоны разреза. Чтобы приступить к резке, первым делом инвертор воздушно-плазменной резки необходимо расположить в непосредственной близости от края листа. Часто требуется дополнительно высверливать отверстие, с которого и будет начинаться резка. На некоторых моделях имеются специальные пружины, которые позволяют во время работы удерживать плазмотрон на одинаковом расстоянии от заготовки. Прежде чем активировать « режущую струю», необходимо по цвету определить степень нагрева поверхности и лишь потом приступать. Ещё одной особенностью плазменной резки является тот факт, что нет особых требований к самой поверхности металла. Устройство одинаково качественно разрежет и чистый металл и полностью покрытый ржавчиной.

Каждый аппарат воздушно-плазменной резки требует периодического охлаждения, поэтому через некоторое время после начала работы ему следует дать отдохнуть. Числовые значения периодов работы и охлаждения указываются в техническом паспорте изделия и могут существенно отличаться.

Ощутимым преимуществом использования на производстве воздушно-плазменной резки является тот факт, что в сравнении с газовой она абсолютно безопасна и риск аварии практически равен нулю.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector