7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Резка чугуна кислородом

Сущность процесса кислородно-флюсовой резки

Чугун имеет температуру плавления ниже температуры воспламенения, поэтому при обычной резке чугун будет плавиться, а не сгорать в кислороде. Содержащийся в чугуне кремний, образует тугоплавкую окись кремния, которая также препятствует резке.

Цветные металлы (медь, алюминии, латунь, бронза) имеют большую теплопроводность, образуют туго птавкие окислы и также не поддаются обычной 1азовои резке Удалить тугоплавкие окислы можно либо переводом их в легкоплавкие, либо введением в зон реза дополнительного тепла.

Резку высоколегированных сталей можно обеспечить наложением вдоль линии реза низкоуглеродистой стальной полосы, при сгорании которой выделившееся тепло, а также переходящее в шлак расплавленное железо и его окислы способствуют разжижению окислов хрома. Этим способом можно резать нержавеющие стали толщиной до 20 мм, однако при этом рез получается широким, а скорость резки низкая.

Для резки хромистых, хромоникелевых нержавеющих сталей, чугуна и цветных металлов применяют способ кислородно флюсовой резки. Сущность кислородно флюсовой резки заключается в том, что в разрез вместе с режущим кислородом вводится порошкообразный флюс, при сгорании которого выделяется дополнительное тепло и повышается температура в зоне реза. Кроме того, продукты сгорания флюса, взаимодействуя с тугоплавкими окислами, образуют жидкотекучие шлаки, которые легко удаляются из зоны реза, не препятствуя нормальному протеканию процесса

Основным компонентом порошкообразных флюсов, применяемых при кислородно-флюсовой резке металлов, является железный порошок. Железный порошок при сгорании выделяет большое количество тепла (около 1800 ккал/кг). При выборе железного порошка необходимо иметь в виду, что процесс резки зависит от его химического состава и его грануляции. При использовании порошков, содержащих до 0,4% углерода и до 0,6% кислорода, процесс резки нержавеющей стали протекает устойчиво. Дальнейшее увеличение содержания углерода и кислорода в порошке приводит к увеличению расхода порошка и ухудшению качества поверхности реза.

Основными критериями при выборе грануляции железного порошка являются обеспечение его наилучшей транспортировки и регулирование расхода. Опытами установлено, что лучшие результаты при кислородно-флюсовой резке дает железный порошок с размерами частичек от 0,07 до 0,16 мм. Опытами также установлено, что лучшие результаты при резке нержавеющих хромоникелевых сталей достигаются при добавлении к железному порошку 10—15% алюминиевого порошка. Смесь железного и алюминиевого порошков дает жнд-котекучий шлак, температура плавления которого не превышает 1300° С. Для резки нержавеющих сталей применяется алюминиевый порошок марки АПВ.

Для поверхностной и разделительной резки нержавеющих сталей используют в качестве флюса смесь алюминиево-магииевого порошка с ферросилицием или силикокальцием. Алюминиево-магниевый порошок, входящий во флюсовую смесь, сгорая в струе кислорода, повышает температуру пламени, а ферросилиций или силикокальций действуют на окислы хрома как флюсующая добавка.

Pereosnastka.ru

Обработка дерева и металла

При обычной кислородной резке, когда режущая струя направлена приблизительно нормально к поверхности металла, прорезается вся его толщина; здесь преследуется цель отделить или отрезать часть металла. Такая резка может быть названа разделительной. Возможен и другой способ использования режущей кислородной струи: она может быть направлена под очень малым углом к поверхности металла, почти параллельно ей (рис. 2, а). В этом случае струя кислорода выжигает на поверхности металла канавку овального сечения. Подобный метод называется кислородной обработкой, иногда кислородной строжкой или кислородной вырубкой металла.

Для кислородной обработки применяются специальные резаки, выпускаемые нашей промышленностью. Резак для ручной кислородной обработки типа РП-50 длиной 1200 мм весит 2,8 кг, имеет щиток для защиты руки, расположенной у горячего металла, рычажный клапан для пуска режущего кислорода, три сменных сопла (рис. 3). Резак выбирает канавку шириной 15—50 мм, глубиной 2—20 мм со скоростью 1,5—10 м/мин, удаляя 1,0— 4,5 кг металла в минуту. Расход кислорода равен 200—300 л на 1 кг удаленного металла. Подобным резаком можно выбирать на поверхности металла канавки овального сечения, производя как бы грубую строжку (рис. 2, б). Повторный проход поверхности резаком со срезкой гребешков канавками уменьшенных размеров дает более чистую обработку. При правильной работе получается чистая и гладкая поверхность канавок.

Кислородную обработку можно уподобить механической обработке металла резанием, с заменой резца кислородным резаком. Соответственно процессом кислородной обработки можно выполнить многие операции обработки резанием: строжку, обточку, расточку, нарезку грубой резьбы и т. п., когда достаточно грубой черновой обработки. Возможны также механизированные станки для кислородной строжки, обточки и т. п., требующие весьма незначительной мощности для перемещения резака вдоль обрабатываемой поверхности.

В настоящее время практическое применение кислородной обработки быстро расширяется. Кислородная обработка нашла довольно широкое применение на металлургических заводах для удаления и вырубки трещин, расслоений и других поверхностных дефектов в обжатых слитках. Удаление производится не только вручную, но и механизированным способом, на специальных машинах для огневой или кислородной зачистки. В этом случае удаляются не отдельные дефекты, а весь наружный слой металла толщиной около 3 мм по всей боковой поверхности слитка. Установленная в общем потоке движения машина для огневой зачистки имеет четыре башмака, на которых закреплены резаки для кислородной обработки. Каждый резак выжигает канавку шириной около 36 мм и глубиной около 3 мм. Горячий слиток, имеющий температуру 950—1100° С, проходит через машину со скоростью 20—40 м/мин. Часовой расход кислорода в машине достигает 3000—4000 м3.

Своеобразным способом является резка кислородным копьем, которое представляет собой толстостенную трубку достаточной длины, присоединенную к стволу или рукоятке. Трубка быстро сгорает во время работы и поэтому должна легко и удобно заменяться новой. Внутренний диаметр трубки 2—4 мм, наружный 8—10 мм. При слишком большом внутреннем диаметре в трубку закладывают стальные прутки, уменьшающие свободное сечение трубки и увеличивающие количество сгорающего металла копья. Процесс резки кислородным копьем заключается в прожигании металла струей кислорода, проходящей через стальную трубку, прижатую свободным концом к прожигаемому металлу. Резка производится без использования газового подогревательного пламени, которое заменяется довольно быстрым сгоранием металла самой трубки-копья до 0,5—1 м/мин. Начинается резка с подогрева места начала реза на металле или, что удобнее, с подогрева конца копья, например сварочной горелкой или дугой. При пропускании кислорода конец копья быстро загорается; дальнейший подогрев не нужен, и можно приступить к резке. Затем копье слегка прижимают к металлу и быстро углубляют в него со скоростью 0,15—0,40 м/мин, выжигая отверстие круглого сечения с гладкими стенками.

Расплавленный шлак выдувается из отверстия наружу избыточным кислородом и образующимися газами. При значительной глубине прожигаемого отверстия необходимо ставить изделие наклонно, облегчая вытекание шлаков из отверстия под действием силы тяжести. Копьем можно резать не только сталь, но и чугун, цветные металлы, затвердевшие шлаки, бетон, каменные породы и т. п. В подобных случаях резка происходит под тепловым воздействием горящего копья. Диаметр прожигаемого отверстия обычно составляет 20—60 мм, глубина его может быть доведена до 3 м. Давление кислорода на входе копья равно .5—7 ати, расход кислорода 30—60 м3/ч. Расход трубки быстро растет с глубиной отверстия.

Кислородное копье находит различное применение, например прожигание отверстий, леток в металлургических печах, шпуров в козлах и стальных блоках для подрыва их взрывчаткой, отверстий в бетоне и т. п. При резке кислородным копьем искры и брызги шлака разбрасываются на несколько метров, что вызывает необходимость защиты рабочих и устранения опасности пожара.

Читать еще:  Лазерная резка и гравировка древесины

Рассмотрим специальный процесс кислородно-флюсовой резки, часто дающий хорошие результаты при резке металлов, для которых обычный метод кислородной резки малопригоден или совсем непригоден. Весьма благоприятным для кислородной резки сочетанием физико-химических свойств обладают технически чистое железо и обычная низкоуглеродистая сталь, которые с успехом режутся кислородом. Однако многие легированные стали плохо поддаются обычной кислородной резке, например все стали со значительным содержанием хрома, который при горении стали образует тугоплавкую окись хрома Сг203, преграждающую доступ кислорода к поверхности металла. К таким сталям принадлежат хромоникелевые нержавеющие и жаростойкие стали.

Для резки чугуна, цветных металлов, для которых применение кислородной резки нецелесообразно, разработан специальный процесс кислородно-флюсовой резки и создана необходимая аппаратура. Сущность этого процесса состоит в том, что вместе с режущим кислородом в зону резки вдувается порошкообразный флюс, вносимый во взвешенном состоянии струей режущего кислорода. Флюс, подаваемый в зону резки, состоит главным образом из порошка металлического железа. Сгорая в струе кислорода, железный порошок дает дополнительное количество тепла, расплавляющее тугоплавкие окислы. Окислы железа, образующиеся при сгорании железного порошка, сплавляясь с окислами разрезаемого металла, образуют более легкоплавкий и жидкотеку-чий шлак, легче сдуваемый с поверхности металла и открывающий к ней доступ кислорода. Для получения флюса к железному порошку примешивают порошкообразные флюсующие добавки, облегчающие плавление и вытекание тугоплавких окислов из полости реза. Применяются также флюсы, в основном состоящие из двуокиси кремния Si02, например кварцевого песка. Количество флюсующих добавок зависит от состава разрезаемого металла.

Для кислородно-флюсовой резки необходимо иметь специальную аппаратуру: флюсопитатель и специальный кислородный резак с приспособлениями для подачи флюса. Нормальный флюсопитатель, выпускаемый нашей промышленностью, имеет небольшие размеры и весит около 40 кг. Расход флюса при резке специальных сталей колеблется от 1—2 кг для толщины 10 мм до 10—14 кг для толщины 200 мм на 1 пог. м реза. Флюс расходуется относительно экономнее при больших толщинах. Для малых толщин рекомендуется применять пакетную резку, выбирая оптимальную общую толщину металла. Кислородно-флюсовый способ позволяет успешно резать специальные стали, в том числе нержавеющие и жаростойкие, а также чугун и цветные металлы. Недостатком способа является значительный расход флюса, еще довольно дорогого.

Кислородная резка металла

В процессе кислородной резки происходит горение металла в струе смеси кислорода с горючим газом, и последующий унос из полости реза образовавшихся оксидов этой струей. В качестве горючего газа чаще всего используется ацетилен. Наилучшей разрезаемостью обладают низкоуглеродистые стали с содержанием углерода до 0,3%. С увеличением количества углерода резка кислородом затрудняется.

Высокоуглеродистая сталь требует дополнительного подогрева перед резкой, чтобы избежать образования закалочных трещин. При содержании углерода более 1% и высокого содержания легирующих элементов резка возможна только в присутствии флюса. Кислородная резка также неприменима для цветных металлов и сплавов ввиду тугоплавкости их оксидов. В таких случаях применяется плазменная резка металла.

Кислородная резка, в силу простоты технологии, дешевизны и отсутствия необходимости в специальном оборудовании, широко применяется при раскрое заготовок из листа, труб, сортового проката (уголки, швеллера, двутавры и др.). Резку можно произвести в любом положении. Опытные сварщики при кислородной резке металла могут одновременно снимать фаски для разделки кромок под последующую сварку.

Мощность кислородной резки зависит от нескольких факторов. При резке толстолистовых заготовок более 400 мм используется пламя с избытком ацетилена с целью увеличения длины факела. Мощность пламени будет также больше в том случае, если производится резка отливок с поверхностью, покрытой твердой коркой из песка, или поковок с окалиной.

Давление кислорода зависит от толщины заготовки, конфигурации сопла (с расширением в виде ступеней, без расширения, с коническим расширением и др.) и выбирается по рекомендациям к режущему оборудованию. Недостаток кислорода приводит к неполному сгоранию металла и удалению окислов, а его избыток — к охлаждению детали и повышенному расходу газа. Химическая чистота кислорода сильно влияет на качество получаемых кромок, для достижения хорошего реза без грата с обратной стороны нужно применять кислород с чистотой не меньше 99,7%.

Перед началом процесса резки производится предварительный нагрев резаком без режущего кислородного пламени. Затем открывается кислородный вентиль на резаке и происходит пробивка отверстия в металле, после чего резка выводится на рабочий режим. Ввиду особенности данного процесса начальная точка реза будет иметь отверстие несколько большего диаметра, чем ширина рабочего реза, что необходимо учитывать при расчете размеров заготовок. Точность резки составляет от 1. +/-3 мм при механизированном способе, до +/-5 мм при ручном.

Пакетная резка позволяет производить резку тонких листов с высокой производительностью и хорошим качеством реза. Листы собираются в один пакет толщиной не более 100 мм и стягиваются струбцинами.

Для резки толстого стального металла 300. 700 мм, чугуна, меди, бетона и железобетона применяют кислородную резку под флюсом, основными компонентами которого являются железный и алюминиевый порошок. Он повышает температуру в зоне сварки и способствует превращению тугоплавких оксидов в жидкий шлак, который легко выдувается. Для таких работ используются специализированные установки. Для прожигания отверстий до 4 м в глубину в бетоне и железобетоне кислород продувается сквозь стальную трубу (копье).

Основным оборудованием для ручной газовой резки являются резаки и баллоны с кислородом и ацетиленом, а также вспомогательное оборудование — редукторы, вентили, фильтры, манометры, предохранительные клапана, тележки для поддержки резаков на заданном расстоянии от поверхности металла, средства пожаротушения.

При вырезке круглых заготовок используются циркульные устройства. Наибольшее распространение получили универсальные резаки с инжекторным устройством для резки металлических заготовок толщиной до 300 мм. Резаки укомплектовываются набором мундштуков под определенные диапазоны толщин металла.

Для механизации кислородной резки применяют стационарные и передвижные машины с резаками. Процесс резки производится по копирам из листовой стали или с использованием систем числового программного управления. Механизированные суппорты позволяют вести прямолинейную резку металла. Портативные машины имеют функцию ручной резки по разметке. Крепление машин при резке труб осуществляется при помощи цепного механизма. Некоторые модели позволяют вести работу несколькими резаками.

Преимуществами данной технологии резки являются простота и дешевизна оборудования и расходных материалов, простой метод регулировки горения, универсальность, технологичность, энергонезависимость. К недостаткам можно отнести низкую эффективность нагрева, низкую точность резки, широкую зону термического влияния, приводящую к деформациям деталей, низкую производительность труда.

Газовая резка металла

Тепловая резка металла

ПламяЛазер-азотЛазер-кислородПлазма
Режут:Низко-, среднеуглеродистая сталь, ковкий чугунСталь, нержавеющая сталь, алюминий, .Низкосплавная стальНержавеющая сталь, алюминий, медь, .
Металл.Плавится и горитПлавитсяПлавится, горит, испаряетсяПлавится
ГазыАцетилен+кислород, иногда пропанАзотКислородАргон/водород, азот, воздух, кислород, CO2
Есть ручные?ДаНетНетНет
КапвложенияНизкиеВысокиеВысокиеСредние

Из немеханических способов резки металлов можно упомянуть следующие термические способы резки: газовую резку, плазменную резку и лазерную резку металлов. Принцип, на котором основываются все технологии термической газовой резки, посновывается на использовании тепла для накаливания металла до температуры, достаточной для его плавления, возгорания или испарения.

Читать еще:  Лазерная резка тонкого металла

В случае газовой резки, речь идет, главным образом, о температуре возгорания — то есть, при газовой резке металл не плавится потоком газовой смеси, а лишь доводится ей до температуры возгорания. Затем, топливный газ имеет лишь вспомогательное значение, т.к. экзотермический процесс окисления железа затем проходит самостоятельно, при условии подачи лишь кислорода, который сжигает металл и выдувает из разреза окалину и оплавленные частицы металла. Газовая резка используется обычно для резки конструкционной стали, причем, в том числе, и листов значительной толщины, а иногда также и для резки нержавеющей стали. Типичным топливом является ацетилен C2H2, а окислителем — кислород.

Простейшее приспособление для газовой резки металла состоит из газовых баллонов, регуляторов давления, шлангов, смесителя и газовой горелки. Такое приспособление может использовать в ручном режиме для грубой работы, не требующей высокой точности разрезов — например, для утилизацию стальных конструкций на металлолом. Для вырезки фигурных деталей и частей из стали существуют автоматические установки газовой резки с программным управлением, позволяющие как в значительной степени автоматизировать процесс резки, так и создавать из металлического листа довольно сложные формы.

Резка газом При газовой резке металла, нужны и топливо (ацетилен), и окислитель (кислород). Однако, смесь топлива и кислорода используется только при первичном нагреве и проколе стального листа — после этого, железо возгорается и процесс его окисления проходит уже без участия топливного газа. На этапе собственно резки, нужен лишь кислород, поддерживающий горение и выдувающий из разреза продукты сгорания.

Необходимой и наиболее важной частью любой установки для резки газом является газовая горелка, через которую выходит поток топливного газа в смеси с окислителем (в большинстве случаев, эти компоненты смеси представлены, соответственно, ацетиленом и кислородом). Горелка для газовой резки имеет головку с углом 60° или 90° с одним центральным отверстием-соплом и несколькими соплами, расположенными по кругу от центрального. Центральное сопло предназначено для выхода кислорода, который поддерживает горение железа и выдувает из разреза шлак-окалину, и используется на этапе резки. Внешние сопла предназначены для вывода смеси ацетилена и кислорода только на этапе предварительного нагрева стального листа; круговое расположение топливно-кислородных сопел делает возможным изменение направления разреза без изменения положения горелки, а также обеспечивает лучший баланс пламени предварительного нагрева.

Процесс резки газом начинается с нагрева кромки стального листа или, в некоторых случаях, некоей точки посередине его поверхности. Этот предварительный нагрев осуществляется путем подачи пламени ацетилена+кислорода через расположенные по окружности горелки сопла и продолжается до тех пор, пока сталь не приобретет температуру, достаточную для возгорания (это обычно становится заметно по характерному ярко-вишневому цвету «отпечатка» пламени на листе). Когда это произошло, открывается подача сильной струи кислорода через центральное сопло. Кислород вступает в химическое взаимодействие с железом, входящим в состав стали, моментально окисляя ее в расплавленный оксид железа, который затем выбивается струей кислорода из разреза.

Окисление железа, происходящее процессе газовой резки ацетиленом+кислородом, является высоко экзотермическим процессом. Однажды начав процесс горения железа (путем первичного нагрева и, затем, подачи на прогретую точку кислорода), для его поддержания требуется лишь подавать в создаваемый разрез кислород. При этом, резка протекает значительно быстрее, чем если бы сталь просто расплавлялась. Сопла подачи топливной смеси на этапе собственно резки не принимают участия в процессе. Сильный рост температуры в месте резки будет легко заметен по интенсивному свечению, хорошо видному даже через соответствующие защитные очки (ношением которых, кстати говоря, никогда не нужно пренебрегать).

Нажмите на изображения ниже, если захотите увидеть их в большем разрешении::

Преимущества резки стали газом

Термическая газовая резка стали имеет перед механическими способами резки целый рад преимуществ, в том числе:

Газовая резка позволяет резать сталь со скоростью, в 2 раза превышающей скорость использования резака с двигателем внутреннего сгорания даже в руках опытного и физически сильного оператора.

Особенно при резке больших листов или при частой резке на одном месте, особое значение принимает малый вес и удобство использования переносного газового резака — с другой стороны, переносной бензиновый резак очень тяжел, неповоротлив, сильно вибрирует и не менее сильно шумит при работе и требует от оператора значительных усилий для контроля работы.

Переносная ацетилен-кислородная горелка может легко прорезать листы стали толщиной 2 дюйма, а со специальными насадками — до и более дюймов. Стационарные же газовые установки резки могут резать листы металла вообще неопределенной толщины. Для переносных бензиновых резаков предельная толщина разрезаемого металла и близко не приближается к 8 дюймам.

С помощью стационарных установок резки газом, оснащенных системой позиционирования сопел на основе сервоприводов и программным управлением, можно вырезать из стального листа формы практически неограниченной сложности — при этом, подобные установки могут оснащаться и соплами, делающими особо чистый и четкий разрез. Ничего подобного механические способы резки обеспечить не могут.

В тех случаях, когда не нужна чистота разреза, вместо ацетилена можно, в качестве топливного компонента газовой смеси, использовать пропан: разрез металла при резке пропаном/кислородом получается далеко не таким аккуратным, как у ацетилена, но пропан значительно дешевле. Пропан-кислородные смеси используют, например, при резке стали на металлолом.

У резки газом есть и недостатки. Пожалуй, основной из них — это ограниченный спектр металлов, которые можно резать. Газ можно использовать только для резки низко- и среднеуглеродистых сталей и ковкого чугуна; высокоуглеродистые стали резать газом нельзя, так как температура их плавления очень близка к температуре пламени — поэтому, окалина при резке не выбрасывается с обратной стороны листа в виде искр, а, скорее, смешивается с чистым расплавленным металлом около разреза. Это, в свою очередь, не дает кислороду добраться до металла и прожечь его. В случае с чугуном, кроме ковкого, мешают процессу резки как графит между зернами, так и сама форма зерен.

Газопламенная строжка и очистка

Газопламенная строжка используется для обработки соединений и удаления дефектных швов. Для этого, реагирующая (горящая) смесь нагревает металл до температуры возгорания, струя кислорода сжигает мегалл и уносит с собой сожженный (и иногда частично расплавленный) металл. При газопламенной строжке, используется то же оборудование, что и при газопламенной резке металла — только, требуется заменить сопло: если при резке струя кислорода обычно бывает ориентирована под прямым углом к поверхности разрезаемого металла, то при газопламенной строжке струя почти параллельна поверхности обрабатываемой части.

Похожим на газопламенную строжку процессом является газопламенная очистка, при помощи которой поверхности очищают от ржавчины, вторичной окалины, краски, смазок и пыли. Примерами могут служить очистка стальных и бетонных поверхностей.

Процесс осуществления резки металла пропаном и кислородом

На сегодняшний день считается, что резка металла пропаном и кислородом наиболее распространенный и наиболее популярный метод резки.

Читать еще:  Как сделать станок для резки пенопласта?

Особенности использования промышленных газов при осуществлении резки

Непосредственно при осуществлении резки резак использует два газа. При помощи кислорода осуществляется резка металла, помимо этого для поддержания рабочего процесса используется в качестве подогревателя газ пропан.

При помощи использования пропана в качестве нагревателя осуществляется нагрев поверхности металлической детали, которую предполагается разрезать. При сгорании газа пропана происходит нагрев металлической поверхности детали до значений около 1000-1200 градусов Цельсия. После достижения этой температуры через резак подается кислород, при помощи которого происходит горение материала в месте резки и удаление продуктов горения.

Залогом осуществления качественной резки является непрерывная подача газа.

Для работы используется резак марки Р1-01П. Этот тип резака чаще всего применяется при раскраивании заготовок изготовленных из каленой стали и чугуна.

Резка металла пропаном и кислородом используется только в отношении тех металлов и сплавов, которые отвечают определенным требованиям, основными среди которых являются следующие:

  • температура плавления окислов, подвергающегося резке металла или сплава должна быть ниже температуры плавления металла;
  • количество теплоты, которое выделяется при горении метала или сплава должно быть достаточным для того чтобы поддерживалась постоянная кислородная резка;
  • шлаки, образующиеся при осуществлении резки металла должны обладать высокой текучестью, а также должны легко подвергаться выдуванию с места, в котором осуществляется резка;
  • теплопроводность сплавов и металлов, подвергающихся резке должны обладать не слишком высоким уровнем теплопроводности.

Разработано несколько типов резки металлических заготовок кислородом.

Виды резки металлов и сплавов кислородом

Существует несколько типов процессов резания при помощи кислородной струи. Особенности того или иного процесса зависят от формы, материала детали и места осуществления разреза.

Все типы кислородной резки можно разделить на несколько групп:

  • первая группа — разделительная резка газом;
  • вторая группа поверхностная обработка;
  • третья группа — сверление.

В первую группу входят следующие типы разрезания газовым потоком:

  • скоростное разрезание кислородом;
  • нормальное разрезание кислородом;
  • кислородно-флюсовое разрезание.

Во вторую группу входят такие типы обработки материала:

  • проведение строжки поверхности;
  • проведение строжки канавок;
  • проведение обточки.

Третью группу типов кислородной обработки материала заготовок составляют:

  • сверление при помощи использования кислородного копья;
  • прожигание отверстий обычным потоком газа.

Наиболее часто применяемыми типами обработки детали путем разрезания газовой струей является разделительная кислородная резка.

Технология разделительного разрезания позволяет применять ее практически повсеместно. Особенностью этой технологии является использование резака под определенным углом к обрабатываемой поверхности. При осуществлении разрезания струя направляется к месту осуществления разрезания в перпендикулярном направлении по отношению к обрабатываемой плоскости, а при осуществлении скоса кромок струя направлена под определенным наклоном к плоскости поверхности детали.

Подготовка поверхности, достоинства и недостатки резки при помощи кислорода

При подготовке плоскости материала к осуществлению технических операций с использованием кислородной резки требуется провести очистку поверхности от ржавчины и других загрязнений. Деталь размещается в таком положении, чтобы было легко проводить все технические операции с материалом детали. При проведении разрезания нужно обеспечить свободный выход газовой струи через заготовку. Производительность и скорость процедуры тем выше, чем чище газ, используемый для разрезания. При попадании струи в толщу материала детали происходит искривление газовой струи исправить эффект искривления струи газа можно путем наклона на определенный угол резака используемого в процессе работы.

Струя газа имеет форму конуса, который имеет расширение в нижней части. Такая форма струи приводит к тому, что при обработке толстой детали на противоположной стороне образуется большое количество окалины. Чтобы избежать этого явления осуществляют увеличение мощности струи газа пропорционально толщине заготовки.

Основными параметрами процесса являются давление газа и скорость резания. При выборе правильной скорости процесса, искры, образующиеся в процессе резки, направлены вниз под углом 85-90 градусов.

Как и любой другой процесс обработки, кислородная резка имеет свои достоинства и недостатки.

К преимуществам этого технологического процесса можно отнести:

  • возможность проведения обработки заготовок имеющих толщину до 80 мм;
  • осуществление резов любой сложности и конфигурации;
  • отсутствие жестких требований к помещениям, в которых проводится разрезание заготовок;
  • мобильность технологических установок;
  • возможность быстрого проведения работ;
  • выгодное ценовое соотношение между стоимостью проведения работ и их качеством.

К недостаткам технологии относятся:

  • невозможность проведения операций с заготовками толщиной более 80 мм;
  • невозможность обработки заготовок из нержавеющей стали;
  • ограниченность применения технологии, можно использовать только для заготовок из стали и чугуна;
  • возникновение больших линейных отклонений;
  • невысокое качество кромки;
  • наличие потребности в проведении допобработки кромки.

Помимо этого обработка материала этим методом требует наличие у человека определенных знаний и умений.

Автор: Администрация Общая оценка статьи: Опубликовано: 2015.08.31

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Кислородно-флюсовая резка

Кислородно-флюсовая резка применяется для сталей, которые невозможно резать просто кислородом, так как нет необходимых требований для резки. Это могут быть хромоникелевые стали, высоколегированные хромистые, цветные металлы, чугун. При резании этих сталей они образуют очень твердые окислы, имеющие высокую температуру плавления, которые затрудняют процесс резания. Кислородно-флюсовая резка успешно решает эту проблему, благодаря тому, что в режущую зону вместе с кислородом вводится флюс в виде порошка, при сгорании которого выделяется значительно больше тепла и повышается температура в этой зоне. Также сгоревшие элементы флюса размягчают шлаки окислов и делают их жидкотекучими, что позволяет легко удалить их из зоны реза и улучшить дальнейшую резку металла. Флюсом служит железный порошок, роль которого во время сгорания выделять большое количество тепла, около 1800ккал/кг. От того каким будет химический состав этого порошка и какова его грануляция, зависит процесс резки. Если резать нержавеющую сталь, то содержание кислорода, который находится в порошке в виде окислов, должно быть не более 6%. При резке чугуна флюс снижает в сплаве содержание углерода, разжижает шлак. При этом используют флюс, содержащий железный и алюминиевый порошок. Подобным образом применяют флюс при резании цветных металлов.

При кислородно — флюсовой резке производят расчет флюсового состава для резки нужного металла по диаграмме состояния, получения шлакового состава с минимальной температурой плавления и вязкостью. Резаки кислородно-флюсовой резки имеют некоторое отличие от резаков для кислородной резки тем, что каналы, подающие кислород, имеют больший диаметр. Техника резания такая же, как и при кислородной резке, только мощность подогреваемого пламени больше на 15-20%, это позволяет флюсу равномерно нагреваться до момента воспламенения.

Скорость кислородно-флюсовой резки зависит от количества флюса, который подается в единицу времени. Такая резка применяется также и для резки бетона и железобетона, но при этом применяют флюс, имеющий большую тепловую эффективность, чем для металла. Чтобы флюс не воспламенился при кислородно-флюсовой резке в резаке, бачке или шланге, нужно применять порошок, имеющий менее 96% чистого железа или алюминия.

Кислородно-флюсовая резка имеет широкое применение в металлургии, тяжелом машиностроении для резания блюмов, когда они в холодном состоянии, при резании слитка мерных заготовок.

Оставьте свой комментарий Отменить ответ

Плазменно-дуговая резка выполняется сжатой дугой, способной легко разрезать металл, проплавляя…

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector