Преимущества плазменной резки металла - Строительный журнал
9 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Преимущества плазменной резки металла

Плазменная резка металла: преимущества, недостатки и особенности

Плазменная резка металла имеет похожие черты, но и обладает некоторыми противоположными особенностями в сравнении с газокислородным методом. Данный тип резки был предложен вместе с первыми плазменными станками. Произошло это в середине прошлого века. Вместе с тем, учитывая общий уровень развития техники и технологий подобное оборудование было дорогостоящим и достаточно громоздким. Учитывая это, резка таким способом применялась только крупными промышленными предприятиями и далеко не во всех отраслях. На сегодняшний день ситуация изменилась, и плазменная резка стала более дешевой, популярной и востребованной.


Плазменная резкаСледует отметить, что недостатки, характерные для газокислородной обработки металла не характерны резке плазменной. Рассмотрим особенности данного способа обработки металла. Обработка производится посредством быстрого и интенсивного расплавления металла вдоль воображаемой линии разреза. За счет применения сжатой электрической дуги выделяется тепловая энергия и происходит нагрев металла. Кроме того, поток плазмы, следующий за электрической дугой, убирает расплавленный металл из области резки. Таким образом, плазма представляет собой сгусток ионизированного газа с температурой 15-20 тысяч градусов. Именно это является основной причиной большей эффективности плазменной резки металла в сравнении с газокислородной обработкой. При газокислородном способе резки рабочая температура достигает 1800 градусов, что на несколько порядков меньше, чем при плазменном способе.

Станок для плазменной обработки металла прошел в своем развитии определенный путь, несколько раз преображался и проходил модернизацию, приобретая при этом простоту в использовании и функциональность.

Учитывая технологические особенности, плазменная резка приобрела на сегодня наибольшую популярность и является наиболее востребованным способом обработки. К основным особенностям можно отнести то, что при осуществлении резки нет необходимости заправлять газовые баллоны или решать вопросы по их доставке. Не возникает потребность в применении присадок для обработки цветных металлов либо осуществление других мер, связанных с соблюдением технической и пожарной безопасности.

Для осуществления плазменной резки потребуется только электроэнергия и воздух. Кроме вышеназванного потребуются некоторые расходные материалы. К таковым относятся сопла и электроды. То есть, способ довольно экономичный.

В каких случаях плазменная резка наиболее предпочтительна? К ним относятся такие:

  • ситуация, когда есть необходимость резки алюминия или сплавов алюминия, сечение которого может достигать 120 мм;
  • когда необходимо порезать медь толщиной до 80 мм так же не обойтись без использования плазменного способа;
  • случаи, когда возникает потребность в резке углеродистых и высоколегированных сталей. При этом, толщина таких сталей не более 50 мм;
  • чугун сечением не более 90 мм также наиболее эффективно режется плазмой.

Применение плазменной резки отчасти распространяется и на металл сечением 120-200 мм. Хотя в этом случае все-таки более предпочтительным является газокислородный способ.

Эффективность применения плазменного станка и его правильное использование напрямую зависит от характеристик металла, который обрабатывается. К таким относится толщина материала и его теплопроводность. Тут зависимость довольно простая: чем выше теплопроводность материала, тем больше его теплоотвод и тем меньшей может быть толщина материала, который можно обрабатывать. Например, в связи с большей теплопроводностью меди толщина ее резки меньше, чем при обработке нержавеющей стали.

Преимущества плазменной резки металлов

Плазменная технология резки применяется для работы с цветными и черными металлами. Она намного быстрее разрезает стальные конструкции, оставляя ровный след.

Как работает техника

Машина плазменной резки работает не так, как оборудование для резки обычным резцом. Электрическая дуга создается между соплом и электродом, потом в сопло подается газ под давлением, который превращается в струю плазмы. Температура плазмы может достигать 30 тысяч градусов.

Станок для плазменной резки металла работает на двух видах газов:

  • активных;
  • пассивных.

Аппарат, который применяется для работы, прост в использовании. Мастеру не нужно постоянно работать с газовыми баллонами. Газ, который используется при резке, зависит от того, с какой сталью работает специалист.

Преимущества технологии

Услуги плазменной резки востребованы, потому что технология имеет несколько преимуществ:

  • плазменная резка применяется при работе с любыми видами металлов;
  • технология исключает тепловую деформацию изделия;
  • работа с аппаратом для резки безопасна;
  • с помощью плазменной резки можно создавать сложные геометрические фигуры;
  • ограничений по сложности геометрических вырезов нет;
  • по сравнению с газопламенной резкой плазменная обеспечивает более высокую скорость работы;
  • после резки получается чистый и ровный разрез.

При плазменной резке не нужно держать постоянно баллоны на рабочем месте. Это исключает несчастные случаи на производстве. Техника автономна и надежна.

Работая с другой техникой, мастер может сталкиваться с такими проблемами, как неровный и грязный шов, повреждение изделия из-за нагрева металла, проблемы с производством сложных форм. Если мастер использует новейшее оборудование, то проблем не будет. Металлический лист будет теплым, и изделие не получит никаких повреждений.

Плазменная резка производится вручную специальными аппаратами, которые можно транспортировать. Разрезание производится методом плавления, поэтому шов получается чистым и ровным.

Сфера использования

Плазменная резка крайне редко применяется в бытовых условиях, где нет потребности для быстрого разрезания листов стали средней толщины. Зато на промышленных площадках, заводах и в строительстве она очень распространена. Коммунальные проблемы тоже требуют более эффективного оборудования.

Плазменные аппараты режут стальные конструкции, камень и пластик. Они уникальны по своей эффективности и функциональности. Другое оборудование имеет массу недостатков, а преимуществ у него значительно меньше.

Если нужно разрезать трубы, листы стали или металлоконструкции, то более удобного и быстрого способа решить проблему нет. Когда речь идет о толстых конструкциях, то описываемая методика более эффективна. Не стоит тратить время, используя другую технику резки.

В организациях, где нужно резать сталь максимально быстро, применяют именно такой вид оборудования. Расходы на него окупаются высокой скоростью работы и качеством.

Плазменная резка металла: плюсы и особенности технологии

Необходимость резки металла возникает во многих сферах человеческой деятельности. Для этой цели специализированные организации применяют различные методики. Наибольшее распространение получила технология плазменной резки. Цена услуги в компании «Металлобаза Новосаратовка» определяется типом и объемом сырья, уровнем сложности получаемых изделий. Основным инструментом рабочих операций выступает плазматрон.

Специфические черты плазменной технологии резки

В основе реализации технологии лежит термическое воздействие на металл плазмы – струи газа (азот, аргон, водород, кислород). Процесс осуществляется в условиях высокого давления, температура в этот момент может варьировать от 5 до 30 тысяч градусов. В плазму газовый поток трансформируется под воздействием электрической дуги.

Читать еще:  Резка плитки электрическим плиткорезом

Технология плазменной резки удобна универсальностью своего применения. Ее можно использовать для резки любых металлов. Единственное различие заключается в виде применяемого газового потока. Для черных металлов наиболее эффективным считается активный газ (кислород), для цветных – все остальные, являющиеся неактивными.

Конкурентные преимущества резки металлов плазмой

Плазменная технология в производственной практике появилась относительно недавно, но быстро нашла активное применение. Этому поспособствовал целый ряд ее конкурентных достоинств в сравнении с аналогичными методами:

предельная точность получаемых размеров и форм;

возможность получения ровных, безопасных краев на изделиях;

практически безотходное исполнение.

Чаще всего применяется плазменная резка металла, если толщина его листов не превышает 50 мм. В этом случае технология обеспечивает предельное быстрое получение партии необходимых заготовок. Для справки: плазмой резка металла осуществляется в 4 раза быстрее чем лазером. Последний до недавнего времени считался самым прогрессивным способом обработки цветного и черного сырья.

Для кого актуальна услуга плазменной резки металлов

Плазменная резка металлического сырья – услуга, актуальная для широкой целевой аудитории. Воспользоваться ею стоит всем, кто стремится минимизировать свои расходы на обработку сырья. В перерасчете на количество получаемых за единицу времени заготовок плазменная резка обходится намного дешевле аналогичных способов. Все расходы распределяются на общее число изделий, и за счет этого укладываются в рамки демократичного бюджета.

Заказывая плазменную резку, нужно учитывать, что итогом будут полностью готовые изделия из металла. Их заказчику гарантировано не понадобится подвергать вторичной обработке. Под воздействием плазмы заготовки получают идеально ровные края и предельно точные размерные параметры. Их можно сразу же запускать в последующие технологические циклы либо в реализацию.

Плазменная резка не имеет ограничений не только по типу используемого сырья, но и по категориям получаемых изделий. Метод позволяет осуществлять высокоточную фигурную резку. Для этой цели допустимо применять сталь не толще 50 мм, медь – 80 мм, чугун – 90 мм, алюминиевые сплавы – 120 мм.

В каждом из этих случаев мастера стремятся максимально задействовать всё имеющееся металлическое сырье. За счет этого общее количество изделий увеличивается, а объем получаемых отходов минимизируется. И заказчики услуги, и исполнители от подобного производственного соотношения только выигрывают. Первые получают возможность повысить уровень рентабельности своих предприятий, вторые – стабильно расширяют свою базу постоянных клиентов.

Преимущества плазменной резки металлов

Технология резки плазмой быстро набирает высокую популярность по всему миру. Причины этого понятны. С каждым днем коренным образом меняются ее возможности и эффективность. На современном высококонкурентном международном рынке каждый день появляются все более заманчивые решения (особняком стоят наработки компании Нyperthem). Производствам, ищущим новые методы увеличения прибыльности, следует обратить свой взгляд на выгодное положение плазменной резки нового поколения (роботизированная или ЧПУ) перед газопламенной ЧПУ. Это значит:

-значительное увеличение скорости резки минимум в 10 раз;

-нет более необходимости производить предварительный подогрев заготовок (ждать пока пламя резака нагреет металл до оптимальной температуры);

-высочайшее качество резки означает практически отсутствие каких-либо доработок и снижения количества материала, идущего в отход;

-чистота реза, отсутствие заусенец и шлака. Не нужно шлифовать;

— большая эффективность при работе с тонким металлом;

-отсутствие деформаций, развивающихся в следствии высокотемпературного термического влияния в зоне реза;

-обычная газопламенная резка применима только к углеродистым и легированным сталям. Плазменная резка берет мягкую сталь, коррозионностойкие стали, а также алюминий и сплавы на его основе;

-суммарные расходы на эксплуатацию значительно снижаются.

В сумме эти преимущества помогают увеличить количество производимой в единицу времени работы, а значит позволяют выпускать больше изделий в течении рабочей смены и снизить цифру затраченных средств на их производство.

P.S. Правда, как всегда это бывает, есть одно существенное ограничение. Все эти преимущества актуальны при толщинах не более 50 мм. Более толстые металлы по-прежнему режут газом.

Добавить комментарий Отменить ответ

Для отправки комментария вам необходимо авторизоваться.

Cтоит ли ПОКУПАТЬ, отзывы сварщиков:

  • Сварочный трансформатор PATRIOT 200AC 102,00 ₽
  • Зарядное устройство GreenWorks G24C 2490,00 ₽
  • Стабилизатор напряжения PRORAB DVR 1000 2597,22 ₽
  • Стабилизатор Ресанта АСН-2000 Н/1-Ц Lux 3610,00 ₽
  • Стабилизатор напряжения Ставр СН-2000 3920,00 ₽
  • Сварочный аппарат BauMaster AW-79161 3990,00 ₽
  • Hitachi AB17 зарядное устройство 4076,87 ₽

Плазменная резка металла

ОТЛИЧИЕ ПЛАЗМЕННОЙ РЕЗКИ ОТ ЛАЗЕРНОЙ

Параметр сравненияЛазерПлазма
Точность резкиПостоянная ширина реза (0,2-0,375 мм)Плазменная дуга нестабильна, ширина реза не постоянна (0,8-3 мм)
Погрешность0,05 мм0,5 мм
ОкалинаМинимальнаяПрисутствует
Конусность0,05 01-3 0
Термическое воздействиеМинимальное, металл не нагреваетсяБолее выраженное

Ваш запрос успешно отправлен.
В ближайшее время наши менеджеры свяжутся с Вами.

  • —>
  • —>
  • —>

Преимущества лазерной резки в сравнении с плазменной.

Лазерная обработка гораздо точнее плазменной и дает больше возможностей.

ДостоинствоОписание
Точность.Нет отклонений от линии реза. С помощью лазерного станка можно создавать изделия сложной конфигурации, делать отверстия любого диаметра и гравировать.
Универсальность.Можно работать с любыми металлами, вне зависимости от их теплофизических свойств.
Шероховатость (нет окалины).Металл остается гладким. С помощью этой технологии можно очень качественно обрабатывать углы или создавать перпендикулярную форму кромок.
Минимальное воздействие.Благодаря этому можно работать даже с очень тонкими листами, и металл не будет деформироваться.
Производительность.Лазерная резка отличатся своей производительностью. Полученный результат легко воспроизводится на многих изделиях.
Доступная стоимость.Особенно выгодно использовать резку лазером при обработке тонкого металлопроката и в том случае, если нужна высокая точность реза.

Плазменная резка — это вид термической обработки металлов, относящийся к высокотехнологичному и производительному методу разделения заготовок. Считается достаточно экономичным, но на практике это не всегда является верным предположением.

По соотношению цены, качества и скорости, лазерная резка значительно эффективнее и выгоднее, чем плазменная.

Достоинства и недостатки плазменной резки.

Недостатки:

Обычно сравнивают воздушно плазменную резку с газовой. Если провести такие параллели, то получается, что плазменная имеет большую точность, экологичность, скорость, экономичность, за счет использования обычного сжатого воздуха.

Недостатком такой резки является большое количество азота на месте реза, а также достаточно неровные края. При желании они, конечно, механически удаляются, но это дополнительные трудозатраты, что влияет на конечную стоимость. Цена плазменной резки может увеличиваться и за счет использования в качестве газа, например, кислород или азот.

Достоинства:

  • высокая скорость резанья;
  • приемлемая чистота шва;
  • минимальная деформация металла;
  • резка большого количества металлов;
  • небольшая зона нагрева в области резанья;
  • отсутствует эффект закалки в зоне реза.
Читать еще:  Резка металла шлифмашинкой

Плазменную технологию целесообразно применять при грубых работах. Например, при раскрое листов с толщиной более 40 мм и в том случае, если качество реза не имеет принципиального значения. Во всех остальных случаях, в особенности в деликатных работах, лучший вариант – это лазерный рез.

Технология плазменной резки металлов.

Если сравнивать плазменную резку с близкой по характеристикам ей газосиликатной резкой, то по своей технологии первая имеет явные преимущества. Не требуется таскать с собой большие баллоны с газом, снижаются меры пожарной безопасности. Для осуществления реза необходима только электрическая энергия, воздух и инструмент с расходными материалами — сопла и электроды.

Плазменная резка металла производится потоком сжатого воздуха, который под воздействием электрической дуги превращается в плазму. Температура такой плазмы достигает 20000 К. Благодаря такой высокой температуре имеется возможность резать металл различных толщин. Процесс резки представляет собой следующее: под большим давлением подается сжатый воздух, электроды создают электрическую дугу, «поджигающую» воздух, в результате получается плазма. Под воздействием плазмы металл расплавляется, а струей воздуха выдувается из зоны реза.

Какие материалы можно резать с помощью плазмы?

Резанью плазмой поддаются большинство металлов, разница заключается лишь в том, какой они могут быть толщины. Основные материалы — это сталь, чугун, медь, бронза, титан, латунь, алюминий, а также сплавы этих металлов. При резанье плазмой не стоит забывать о том, что толщина листа разрезаемого металла напрямую зависит от его теплопроводности. То есть, чем выше теплопроводность материала, тем меньшей толщины лист удастся разрезать. Иначе шов получится слишком неровным и широким — металл будет быстро расплавляться.

Сравнивая лист алюминия и лист стали, получается, что алюминий может иметь гораздо меньшую толщину, чем сталь. Температура плавления первого намного меньше, таким образом, при большой толщине плазма не будет успевать прожечь лист насквозь, когда края начнут оплавляться.

Услуги резки металла:

Лазерная резка металла

Гидроабразивная резка

Фрезерные работы

Характеристики плазменной и лазерной резки металла.

Лазерная резка — это высокотехнологичный, современный метод раскроя материалов. Имеется возможность резать практически все материалы: металлы, полимеры, резину, кожу. По сравнению с плазмой имеет большую точность, чистоту обработки поверхности. А самое главное преимущество лазера — это высокая степень автоматизации процесса. То есть имеется возможность запрограммировать лазерную установку с ЧПУ на автоматическую обработку и раскрой металла. Оператору останется только наблюдать за процессов и контролировать режимы резанья. Благодаря минимальному участию человека в процессе резки, снижается риск получения бракованных деталей.

Также, в отличие от плазмы, лазер способен выполнять такие операции как сверление, термическая обработка металла, гравировка. Все это возможно запрограммировать в один цикл обработки листа металла.

Стоимость плазменной резки металла.

Плазменная резка металла, цена на которую сравнительно доступна, уступает по характеристикам лазерной обработке металла. Технология обработки лазерной и плазменной резки в чем-то схожи, но в то же время принципиально разные. В лазерной установке главным режущим элементом является лазер, создаваемый специализированным генератором.

Казалось бы, что цена лазерной резки должна быть намного выше стоимость плазменной резки. Ведь и технология плазмы значительно проще, чем лазерная, и качество резанья плазмой чуть хуже. Однако, существую сегодня предприятия, которые предлагают лазерную резку, которая намного дешевле плазменной!

Для сравнения, средняя стоимость плазменной резки листа черной стали толщиной 10 мм равна 80 рублям за метр погонный, а стоимость лазерной резки в компании ПРОМЭКС равна 33,5 рублям за метр погонный! Неправда ли выгодное предложение? Вы получаете высококачественный раскрой металла по минимальной цене!

Плазменная резка

Общепринятые обозначения

PAC – Plasma Arc Cutting – резка плазменной дугой

CUT— Cutting-резка

Технология плазменной резки

Плазма представляет собой ионизированный газ с высокой температурой, способный проводить электрический ток. Плазменная дуга получается из обычной в специальном устройстве – плазмотроне – в результате ее сжатия и вдувания в нее плазмообразующего газа. Различают две схемы:

  • плазменно-дуговая резка и
  • резка плазменной струей.

При плазменно-дуговой резке дуга горит между неплавящимся электродом и разрезаемым металлом (дуга прямого действия). Столб дуги совмещен с высокоскоростной плазменной струей, которая образуется из поступающего газа за счет его нагрева и ионизации под действием дуги. Для разрезания используется энергия одного из приэлектродных пятен дуги, плазмы столба и вытекающего из него факела.

При резке плазменной струей дуга горит между электродом и формирующим наконечником плазмотрона, а обрабатываемый объект не включен в электрическую цепь (дуга косвенного действия). Часть плазмы столба дуги выносится из плазмотрона в виде высокоскоростной плазменной струи, энергия которой и используется для разрезания.

Плазменно-дуговая резка более эффективна и широко применяется для обработки металлов. Резка плазменной струей используется реже и преимущественно для обработки неметаллических материалов, поскольку они не обязательно должны быть электропроводными.

В корпусе плазмотрона находится цилиндрическая дуговая камера небольшого диаметра с выходным каналом, формирующим сжатую плазменную дугу. Электрод обычно расположен в тыльной стороне дуговой камеры. Непосредственное возбуждение плазмогенерирующей дуги между электродом и разрезаемым металлом, как правило, затруднительно. Поэтому вначале между электродом и наконечником плазмотрона зажигается дежурная дуга. Затем она выдувается из сопла, и при касании изделия ее факелом возникает рабочая режущая дуга, а дежурная дуга отключается.

Столб дуги заполняет формирующий канал. В дуговую камеру подается плазмообразующий газ. Он нагревается дугой, ионизируется и за счет теплового расширения увеличивается в объеме в 50–100 раз, что заставляет его истекать из сопла плазмотрона со скоростью до 2–3 км/c и больше. Температура в плазменной дуге может достигать 25000–30000°С.

Электроды для плазменной резки изготавливают из меди, гафния, вольфрама (активированного иттрием, лантаном или торием) и других материалов.

Количество тепла, необходимое для выплавления реза (эффективная тепловая мощность qр), поступает из столба плазменной дуги и определяется выражением:

где Vр – скорость резки (см/с);
F – площадь поперечного сечения зоны выплавляемого металла (см 2 );
γ – плотность металла (г/см 3 );
с – теплоемкость металла, Дж/(г·°С);
Тпл – температура плавления металла (°С);
T – температура металла до начала резки (°С);
q – скрытая теплота плавления (°С).

Произведение Vр·F·γ определяет массу выплавляемого металла за единицу времени (г/с). Для заданной толщины металла имеется определенное числовое значение эффективной тепловой мощности qр, ниже которого процесс резки невозможен.

Читать еще:  Лазерная резка меди

Скорость потока плазмы, удаляющего расплавленный металл, возрастает с увеличением расхода плазмообразующего газа и силы тока и уменьшается с увеличением диаметра сопла плазмотрона. Она может достигать около 800 м/с при силе тока 250А.

Плазмообразующие газы

Технологические возможности процесса плазменной резки металла (скорость, качество и др.), а также характеристики основных узлов плазмотронов определяются прежде всего плазмообразующей средой. Влияние состава плазмообразующей среды на процесс резки:

  • за счет изменения состава среды возможно регулирование в широких пределах количества тепловой энергии, выделяющейся в дуге, поскольку при определенной геометрии сопла и данном токе состав среды задает напряженность поля столба дуги внутри и вне сопла;
  • состав плазмообразующей среды оказывает наибольшее влияние на максимально допустимое значение отношения тока к диаметру сопла, что позволяет регулировать плотность тока в дуге, величину теплового потока в полости реза и, таким образом, определять ширину реза и скорость резки;
  • от состава плазмообразующей смеси зависит ее теплопроводность, определяющая эффективность передачи разрезаемому листу тепловой энергии, выделенной в дуге;
  • в ряде случаев весьма значительной оказывается добавка тепловой энергии, выделившейся в результате химического взаимодействия плазмообразующей среды с разрезаемым металлом (она может быть соизмерима с электрической мощностью дуги);
  • плазмообразующая среда при взаимодействии с выплавляемым металлом дает возможность изменять его вязкость, химический состав, величину поверхностного напряжения;
  • подбирая состав плазмообразующей среды, можно создавать наилучшие условия для удаления расплавленного металла из полости реза, а также предотвратить образование подплывов на нижних кромках разрезаемого листа или делая их легко удаляемыми;
  • от состава среды зависит характер физико-химических процессов на стенках реза и глубина газонасыщенного слоя, поэтому для определенных металлов и сплавов некоторые плазмообразующие смеси недопустимы (например, содержащие водород и азот в случае резки титана); диапазон допустимых смесей также сужается с увеличением толщины разрезаемых листов и теплопроводности материала.

От состава плазмообразующей среды зависят и характеристики оборудования:

  • материал катода и конструкция катодного узла (способ крепления катода в плазмотроне и интенсивность его охлаждения);
  • конструкция системы охлаждения сопел;
  • мощность источника питания, а также форма его внешних статических характеристик и динамические свойства;
  • схема управления оборудованием, поскольку состав и расход плазмообразующего газа полностью определяют циклограмму формирования рабочей дуги.

При выборе плазмообразующей среды также важно учитывать себестоимость процесса и дефицитность используемых материалов.

Наиболее распространенные плазмообразующие газы

Газ

Обрабатываемый металл

Алюминий, медь и
сплавы на их основе

Коррозионно-стойкая
сталь

Углеродистая и
низколегированная
сталь

Сжатый воздух

Для заготовительной машинной резки

Для экономичной ручной и машинной резки

Кислород

Для машинной резки повышенного качества

Aзотно-кислородная
смесь

Для машинной резки с повышенной скоростью

Азот

Для экономичной ручной и машинной резки

Для ручной и полуавтоматической резки

Aргоно-водородная
смесь

Для резки кромок повышенного качества

Резка с применением воздуха в качестве плазмообразующей среды называется воздушно-плазменной резкой.

Техника плазменной резки металла

Плазменная резка экономически целесообразна для обработки:

  • алюминия и сплавов на его основе толщиной до 120 мм;
  • меди толщиной до 80 мм;
  • легированных и углеродистых сталей толщиной до 50 мм;
  • чугуна толщиной до 90 мм.

Резак располагают максимально близко к краю разрезаемого металла. После нажатия на кнопку выключателя резака вначале зажигается дежурная дуга, а затем режущая дуга, и начинается процесс резки. Расстояние между поверхностью разрезаемого металла и торцом наконечника резака должно оставаться постоянным. Дугу нужно направлять вниз и обычно под прямым углом к поверхности разрезаемого листа. Резак медленно перемещают вдоль планируемой линии разреза. Скорость движения необходимо регулировать таким образом, чтобы искры были видны с обратной стороны разрезаемого металла. Если их не видно с обратной стороны, значит металл не прорезан насквозь, что может быть обусловлено недостаточным током, чрезмерной скоростью движения или направленностью плазменной струи не под прямым углом к поверхности разрезаемого листа.

Для получения чистого разреза (практически без окалины и деформаций разрезаемого металла) важно правильно подобрать скорость резки и силу тока. Для этого можно выполнить несколько пробных разрезов на более высоком токе, уменьшая его при необходимости в зависимости от скорости движения. При более высоком токе или малой скорости резки происходит перегрев разрезаемого металла, что может привести к образованию окалины.

Плазменная резка алюминия и его сплавов толщиной 5–20 мм обычно выполняется в азоте, толщиной от 20 до 100 мм – в азотно-водородных смесях (65–68% азота и 32–35% водорода), толщиной свыше 100 мм – в аргоно-водородных смесях (35–50% водорода) и с применением плазматронов с дополнительной стабилизацией дуги сжатым воздухом. При ручной резке в аргоно-водородной смеси для обеспечения стабильного горения дуги содержание водорода должно быть не более 20%.

Воздушно-плазменная резка алюминия, как правило, используется в качестве разделительной при заготовке деталей для их последующей механической обработки. Хорошее качество реза обычно достигается лишь для толщин до 30 мм при силе тока 200 А.

Плазменная резка меди может осуществляться в азоте (при толщине 5–15 мм), сжатом воздухе (при малых и средних толщинах), аргоно-водородной смеси. Поскольку медь обладает высокой теплопроводностью и теплоемкостью, для ее обработки требуется более мощная дуга, чем для разрезания сталей. При воздушно-плазменной резке меди на кромках образуются легко удаляемые излишки металла (грат). Резка латуни происходит с большей скоростью (на 20–25%), с использованием таких же плазмообразующих газов, что и для меди.

Плазменная резка высоколегированных сталей эффективна только для толщин до 100 мм (для больших толщин используется кислородно-флюсовая резка). При толщине до 50–60 мм могут применяться воздушно-плазменная резка и ручная резка в азоте, при толщинах свыше 50–60 мм – азотно-кислородные смеси.

Резка нержавеющих сталей толщиной до 20 мм может быть выполнена в азоте, толщиной 20–50 мм – в азотно-водородной смеси (50 % азота и 50 % водорода). Также возможно использование сжатого воздуха.

Плазменная резка низкоуглеродистых сталей наиболее эффективна в сжатом воздухе (особенно для толщин до 40 мм). При толщинах свыше 20 мм разрезание может осуществляться в азоте и азотно-водородных смесях.

Для резки углеродистых сталей используют сжатый воздух (как правило, при толщинах до 40–50 мм), кислород и азотно-кислородные смеси.

Ориентировочные режимы воздушно-плазменной резки металла

Разрезаемый
материал

Параметры режима

Толщина
(мм)

Диаметр
сопла
(мм)

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector