0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Подводная газопламенная резка

Подводная резка металла: описание технологического процесса

Подводная резка металла используется при осуществлении аварийно-спасательных, строительных и судноподьемных работ.

Для подводных работ применяют электрокислородный и газовый способ резки. Электрокислородный способ резки является более опасным с точки зрения техники безопасности из-за возможности поражения электрическим током, особенно в морской воде.

Подводная резка металла резаком осуществляется преимущественно резаками, работающими на бензине, ибо такое горючее вещество можно подать на значительную глубину под большим давлением. Ацетилен при больших давлениях может взорваться, поэтому не используется. Мощность подогревающей пламени при подводной резке в 10-15 раз превышает мощность пламени для резки на воздухе.

Горит огонь под водой в газовом волдыре, создаваемый продуктами сгорания бензина, или путем подачи воздуха вокруг головки резака для оттеснения воды. Розжиг пламени осуществляется электрозапалом, что подключен к батарее аккумуляторов. Давление в бензиновых бачках создается азотом. В резаках бензин разбрызгивается в завихрительных головках и при этом испаряется.

Для подводной резки широко используется спецустановка БУПР. Рампа кислородных баллонов, канистра с горючим, баллоны с азотом и пульт управления БУПР необходимо размещать над водой. Чрезмерный бензин, всплывая на поверхность воды, может заниматься, потому бензокислородная резка применяется в неглубоких водоемах и замкнутых пространствах.

Водородная резка металла осуществляется водородом, который вырабатывается в аппарате. Вследствие разложения молекул воды на 2 элемента, кислород и водород, получается водород. В результате чего появляется газовая смесь, при помощи которой можно осуществлять работы резке.

Технология подводной сварки и резки сдвоенным электродом

Подводная электродуговая резка металла нашло широкое применение как при изготовлении трубопроводов для газо-нефтеперерабатывающей отрасли так и в ремонтном производстве благодаря своей оперативности и простоте выполнения. Однако оно имеет значительные трудности как технологического так и металлургического характера. Технологические трудности заключаются в необходимости обеспечения герметичности оборудования и материалов для зажигания дуги под водой, что требует использования трубчатых электродов и дополнительного оборудования для подачи газа, что создает пузырь в котором зажигается дуга. Металлургические трудности обусловлены водородно-кислородной атмосферой парогазового пузыря, который формируется уже в процессе сварки под водой и способствует окислению легирующих элементов и насыщению металла сварочной ванны водородом, а ускоренное охлаждение окружающей водой приводит к его задержке в металле шва и образованию закалочных структур.

Так же могут использоваться сдвоенные экзотермические электроды для подводной резки металла. Эта технология заключается в том, что электродов размещены параллельно друг другу и подключения их к клеммам источника питания переменного тока. Такая технология позволяет зажигать дугу между электродами над водой и заглублять ее на небольшую глубину к месту сварки. Зажигания дуги под водой возможно с помощью осциллятора. В таком случае концы электродов необходимо изолировать, например термоклеем, с обеспечением воздушного канала между их торцами. После зажигания дуги электроды приближают к деталям. Как только расстояние между электродами и изделием становится меньше расстояния между самими электродами дуга начинает гореть между электродами и деталью, что позволяет выполнять как сварку, так и резку металла.

Реализация такого способа подводной сварки возможна с использованием обычных искусственных электродов с предварительно нанесенным на их поверхность водоотталкивающим изоляционным покрытием. Однако подводная сварка кроме технологических трудностей, имеет ряд металлургических связанных с насыщением металла сварочной ванны водородом и ускоренным охлаждением. Для исследования влияния этих факторов были проведены эксперименты с использованием для подводной сварки электродов марок АНО-21, МР-3, УОНИ 13/45. Все они позволяют формировать в воде качественный сварной шов с характерным металлическим блеском аустенитным нержавеющим сталям.

Общеизвестно, что высокоуглеродистые стали с мартенситной структурой имеют высокую твердость и малую пластичность. Эти обстоятельства имеют существенное значение для установления способности сварных швов заваренных под водой. Технология двухэлектродной подводной сварки и резки штучными электродами на ряду со своей простотой в использовании показала такую эффективность, какую не дает подводная кислородная резка металла. Полученные соединения имеют высокое качество и структуру с небольшой твердостью по глубине, что позволяет делать вывод о пригодности предлагаемой технологии в промышленности.

Подводная газокислородная резка

Ранее всего для подводных работ стала применяться газокислородная резка. Практически пригодные методы и аппаратура были созданы к началу первой мировой войны, на протяжении которой они нашли уже достаточно широкое и разнообразное применение, например, для расчленения взорванных и затопленных пролётных строений мостов с целью расчистки русел и извлечения металла. Давно уже было обнаружено, что пламя ацетилено-кислородной горелки, направленное вертикально вниз, не потухает при осторожном погружении горелки в воду и продолжает гореть в газовом пузыре, образуемом продуктами сгорания, оттесняющими воду и не допускающими проникновения воды во внутренние части пламени.

Подводное пламя может нагревать металл до белого каления. При подаче кислородной струи на разогретую поверхность металл загорается и идёт процесс кислородной резки. Под. водой металл охлаждается весьма интенсивно, для его подогрева требуется пламя в 10—15 раз более мощное, чем для аналогичных работ на воздухе.

Подводные резаки отличаются особо мощной и развитой подогревательной частью и устройствами для создания и поддержания стабильного газового пузыря, оттесняющего воду от пламени и нагреваемой поверхности металла.

образующиеся при сгорании углерода, избыточный кислород, дополнительно вдуваемый воздух и т. д.

Для образования устойчивого защитного газового пузыря пригодны лишь неконденсирующиеся газы. Защитный пузырь может быть создан продуктами сгорания пламени, но часто в современных подводных резаках для создания защитного пузыря вдувается воздух по дополнительной наружной кольцевой щели. За неимением сжатого воздуха на месте работ иногда заменяют его кислородом.

Устройство нормального газокислородного подводного резака показано на фиг. 248. Конструкция резака предусматривает создание защитного газового пузыря посредством вдуваемого дополнительно воздуха или кислорода. Подогревательное пламя резака обычно зажигается и регулируется на воздухе, после чего водолаз спускается с зажжённым резаком к месту работ. При потухании подогревательного пламени производится подъём водолаза, зажигание и регулирование пламени резака и последующий спуск водолаза с зажжённым резаком. При значительных глубинах это вызывает весьма большие потери времени. Поэтому иногда применяется-подводное зажигание пламени резака. Для этой цели резак и вспомогательная металлическая пластинка — зажигательная дощечка присоединяются к полюсам низковольтной аккумуляторной батареи (фиг. 249). По сигналу водолаза зажигательная цепь замыкается, и при проведении мундштуком резака по шероховатой поверхности зажигательной дощечки создаётся искрение, искры зажигают подогревательную смесь, выходящую из мундштука резака, после чего водолаз производит регулирование пламени. Подводное зажигание и регулирование пламени требуют значительного искусства от подводного резчика и применяются обычно лишь при работе на значительных глубинах.

Подводные резаки строятся с подогревательной частью для различных горючих газов. Наибольший тепловой эффект даёт ацетилен, но его взрывоопасность и возможность самопроизвольного

взрывчатого распада при давлении свыше 1,5—2 атм затрудняют его применение в подводных работах, так как даже при небольших речных глубинах часто приходится превосходить допустимые пределы давления для ацетилена, чтобы преодолевать противодавление столба воды.

В настоящее время на практике ацетилен для подводной резки совершенно не применяется, чаще всего используется водород. На фиг. 248 изображён подводный резак с водородным подогревом. Водород не взрывоопасен, поэтому он позволяет работать на глубинах до 30—40 м и даёт длинный факел подогревательного пламени. Как подогревательный газ водород имеет и крупные недостатки, к которым относится его малый удельный вес. Баллон, вмещающий 6 м3 водорода, по весу содержит его всего 0,54 кг. Поэтому требуется транспортирование значительного количества баллонов с водородом для обеспечения работ, что часто встречает большие затруднения.

Водородно-кислородное пламя не имеет чётко выраженного ядра, вследствие отсутствия частиц углерода в пламени, что усложняет регулирование пламени. Водород даёт меньшую калорийность пламени на 1м3 по сравнению с углеводородами, что увеличивает его расход и замедляет процесс резки, увеличивая время разогрева при начале каждого реза.

Возможными, экономически более выгодными заменителями водорода могут служить различные газообразные углеводороды и их смеси. Трудность обеспечения подводных работ горючими газами давно выдвигала вопрос о применении для этих работ жидких горючих, в первую очередь бензина. Многолетние работы по созданию подводных бензорезов долго не давали практически пригодных результатов. Первоначальные подводные бензорезы, по аналогий с обычными бензорезами для работ на воздухе, конструировались с предварительным испарением бензина и додачей его паров в камеру смешения подогревательной части бензореза. В подводных бензорезах применяется электрический подогрев бензина. Ввиду значительного расхода бензина для подогревательного пламени в условиях подводных работ, электрический подогреватель должен иметь довольно значительную мощность, что значительно усложняло конструкцию и эксплоатацию подводных бензорезов и делало их в конечном счёте непригодными для производственного применения.

Читать еще:  Резка керамогранита ручным плиткорезом

Новый принцип конструирования подводных бензорезов был предложен и реализован в период второй мировой войны. Оказалось возможным отказаться от предварительного испарения бензина и заменить испарение распылением или пульверизацией. Бензин распыляется кислородом, и в зону подогревательного пламени подаётся тончайшая бензиновая пыль, успевающая испариться и сгореть полностью. Это изобретение резко повысило эксплоатационные качества подводного бензореза и выдвинуло бензинокислородную резку, пожалуй, на первое место среди способов подводной газокислородной резки.

Современный подводный бензорез (фиг. 250) имеет следующее устройство. Бензин под значительным давлением поступает в камеру смешения по нескольким спиральным каналам малого сечения и входит в камеры отдельными тонкими струйками. К каждому выходному отверстию бензина тангенциально подходит струйка подогревательного кислорода, распыляющая бензин в тонкую пыль и завихривающая смесь бензина и кислорода в камере смешения особого устройства, где и происходит испарение и воспламенение распыленного бензина, догорающего в наружном факеле подогревательного пламени. Бензин подаётся из напорного бачка, необходимое давление в котором создаётся инертным негорючим газом, обычно азотом, подаваемым из баллона через редуктор. Нормальная установка, помимо бензореза со шлангами, включает батарею из 6—12 баллонов кислорода, бачок для бензина и баллон с азотом. Бензорез расходует за один час непрерывной работы: кислорода 30—60 м3, бензина 10—20 кг расход азота незначителен и идёт лишь на создание давления в бензиновом бачке, поэтому одного баллона достаточно на несколько дней работы.

Преимуществами бензинокислородной резки является большая тепловая мощность подогревательного пламени, сокращение расходов на транспортирование баллонов с водородом, недефицитность горючего—бензина. Бензинокислородное пламя имеет хорошо очерченное ядро, облегчающее регулирование пламени.

, образующих устойчивый защитный газовый пузырь, что делает излишним подведение дополнительного защитного воздуха или кислорода, упрощает и удешевляет установку и её эксплоатацию .

Со времени улучшения конструкции подводных бензорезов бензино-кислородная резка является серьёзным претендентом на первое-место среди способов подводной газокислородной резки. Подводная газокислородная резка обеспечивает высокую производительность. Необходимая для резки установка транспортабельна, негромоздка , всегда готова к действию и достаточно надёжна в работе, что весьма важно в условиях аварийно-спасательных операций.

Наряду с указанными достоинствами подводная газокислородная резка имеет серьёзные недостатки, заставляющие часто прибегать к другим процессам. К этим недостаткам относится, например, довольно заметное реактивное действие струи газов, вытекающих из резака, мешающее работе водолаза-резчика. Кроме того, размеры мундштука газокислородного резака настолько значительны, что он не может быть введён в полость реза, а потому при разрезке многослойных неплотных пакетов, например расшатанных взрывом, довольно часто встречающихся в подводных работах, возникают серьёзные затруднения. В этом случае для доступа?

к нижележащему элементу необходимо вырезать и удалить достаточно широкую полосу из вышележащего элемента пакета, что представляет собой обычно трудную и требующую много времени операцию.

Одним из серьёзных недостатков подводной газокислородной резки является трудность зажигания и регулирования подогревательного пламени. Операция зажигания и регулирования пламени под водой трудна и редко применяется. Зажигание и регулирование пламени над водой и последующий спуск водолаза требуют много времени, особенно при значительных глубинах. Обычно при перерывах в работе подводный резчик перекрывает лишь режущий кислород, оставляя гореть мощное подогревательное пламя, потребляющее много горючего и кислорода (в 10—15 раз больше, чем у нормального резака для работ на воздухе). Поскольку при подводной резке машинное время обычно невелико, а время различных вспомогательных операций (когда резки не происходит) превышает машинное время в несколько раз, то общий расход кислорода и горючего на метр реза получается весьма значительным превышая в несколько раз результаты лабораторных испытаний. Всякое потухание пламени резака вследствие обратного удара, перегиба шланга и т. п. вызывает потерю времени на зажигание резака над водой и спуск к месту работ. Поэтому и действительные нормы времени на выполнение работ часто сильно превосходят результаты лабораторных испытаний.

Сварка и резка металла под водой. Краткая история.

Первые упоминания о подводной дуговой сварке и резке металла при помощи электрода относятся к 1887 году. Правда лабораторные опыты профессора Д. А. Лачинова и Н. Н. Бенардоса так и не получили практического применения. О них вспомнили только к началу 30-х годов двадцатого века. К. К. Хренову удалось создать специальные электроды пригодные для подводной сварки и резки металла как в пресной, так и в соленой воде, что и подтвердили натуральные испытания в Черном море. Уже к середине тридцатых, ручную дуговую сварку с успехом применили во время ремонта подводной части парохода «Уссури» и при подъеме парохода «Борис».

Великая Отечественная война подстегнула работы в этом направлении и уже в марте 1942 года, на базе Московского электромеханического института инженеров железнодорожного транспорта была организована специальная лаборатория, в которой К. К. Хренов смог продолжить свои исследования по усовершенствованию методов и техники подводной сварки и резки металлов. Результатом стало изобретение особого электродного покрытия, способного обеспечить устойчивое (стабильное) горение дуги под водой. После тщательного изучения результатов подводной сварки, физико-химического состава металла швов и его свойств, образец признали пригодным для работ по ремонту подводных частей судов, находящихся на плаву. Этим сразу активно стали пользоваться все участники боевых действий, как в нашей стране, так и за рубежом.

Подводная сварка и резка металла получила широкое распространение в мирное время. В таких областях как восстановление шлюзовых затворов портовых сооружений, строительство гидротехнических сооружений и подводных трубопроводов самого различного назначения, а также при всевозможных ремонтных работах на подводных частях судов без постановки их в сухой док.

Несмотря на весьма существенные достижения, оставалась проблема, связанная с низкой производительностью труда и недостаточной прочноплотностью швов. Кроме того, подводная сварка и резка металла требовала высококвалифицированных водолазов-сварщиков владеющих «мокрым» методом, в которых ощущалась значительная нехватка. Речь идет о процессе сварки, при котором рабочая зона находится непосредственно в воде.

Одним из неоспоримых достоинств ручной подводной сварки является простота используемого оборудования и исключительная маневренность, а благодаря отсутствию необходимости применять громоздкое и дорогостоящее оборудование для откачки воды – низкая себестоимость самих работ. До конца пятидесятых годов ХХ века все попытки хоть как-то повысить механические свойства сварных соединений, равно как и механизировать сам процесс подводной сварки и резки металла, успеха не имели.

Зарубежные разработки в области «сухого» метода сварки в этот период шли по пути создания разнообразных обитаемых камер. Основные отличия касались конструкции и размеров:
• Большая глубоководная камера: сам сварщик и рабочее место не контактирует с водой вытесненной из камеры непрерывной подачей воздуха;
• Водолазный колокол: человек работает стоя по пояс в воде, а рабочее место остается полностью сухим;
• портативный сухой бокс: «сухая» среда обеспечена только для зоны сварки.

Каждый из этих методов имел как положительные, так и отрицательные моменты. Объединяло их лишь то обстоятельство, что качество сварных швов абсолютно не отличалось от выполненных на земле.
К недостаткам глубоководных камер, в первую очередь, относится необходимость проведения длительной подготовительной работы (разработка и изготовление камеры необходимой конструкции), а сам процесс подводной сварки и резки металла становился «золотым» из-за большого количества обслуживающего персонала и технических средств обеспечения (насосы, плавучие краны и пр.).

Читать еще:  Резка оцинковки в размер

Сухой портативный бокс и водолазный колокол немного выигрывали в себестоимости, однако значительно уступали «мокрому» способу сварки в универсальности и маневренности. Поэтому с 1965года нашими учеными стали разрабатываться методы, направленные на совершенствование именно «мокрого» способа подводной сварки и резки металла, принесшие ощутимые результаты. Детальный анализ позволил четко сформулировать основные проблемы, возникающие при «мокром» способе подводной сварки.

1. Сварные швы имеют низкие механические характеристики:
— пористость – в результате растворения водорода;
— шлаковые включения – из-за окисления кислородом компонентов металла;
— большую скорость охлаждения – следствие контакта воды и нагретого металла.

2. Низкая производительность:
— использование покрытых электродов, замена которых (через 1–2 мин.) крайне затруднительна под водой;
— козырек обмазки делает наблюдение за формированием шва затруднительным.

Решением этих проблем стало применение метода полуавтоматической сварки как наиболее универсального и маневренного. В отличие от сменных электродов здесь присутствует непрерывная механизированная подача проволоки, а ее меньший диаметр (и отсутствие покрытия) улучшают сварщику обзор. Однако и в этом случае нашлась своя ложка дегтя на пресловутую бочку меда. Использование сплошной проволоки при подаче защитных газов (углекислый газ, аргон), но без непосредственной защиты зоны сварки, оказалось не в состоянии обеспечить нужные механические свойства сварочных швов.

Изобретенная впоследствии в Институте электросварки им. Е. О. Патона порошковая самозащитная проволока диаметром 1,2–2,0 мм позволила решить эту проблему, то есть обеспечить надежную защиту зоны сварки. Ей была присвоена маркировка ППС-АН1. В настоящее время при помощи порошковой проволоки можно добиться качественных сварных соединений применяя метод «мокрой» сварки на глубинах до тридцати метров.

Резка кислородным копьем, подводная и электрокислородная

Резка кислородным копьем

Резка кислородным копьем заключается в прожигании (сверлении) в металле отверстий струей кислорода, подаваемого по стальной трубке, конец которой, примыкающий к прорезаемому металлу, нагрет до температуры воспламенения в кислороде. Другим концом трубка присоединяется к рукоятке с вентилем для кислорода.

До начала резки конец трубки нагревают до температуры воспламенения. Это осуществляется сварочной горелкой, электрической дугой с угольным электродом или пропусканием тока от сварочной установки через трубку и угольную пластинку, положенную на изделие, подлежащее сверлению. Разогретая угольная пластинка воспламеняется при подаче в трубку кислорода под давлением 1-2 кгс/см 2 и обеспечивает подогрев конца трубки до ее воспламенения. Затем давление кислорода повышают до 5-6 кгс/см 2 и конец трубки прижимают к прожигаемому изделию. Далее горение трубки и обрабатываемого металла осуществляется без какого-либо дополнительного источника тепла; по мере сгорания трубки и прожигания отверстия трубка подается вперед. Сгоревшая трубка заменяется новой.

Наибольшие трудности при сверлении кислородным копьем представляет удаление шлака из отверстия. Наиболее легко шлак удаляется при резке снизу вверх, когда шлак стекает под действием силы тяжести в просвет (зазор) между трубкой и стенками отверстия, которое имеет при этом больший диаметр, чем трубка. Хуже стекает шлак при наклонном расположении прожигаемого отверстия (снизу вверх), однако такое расположение при резке копьем является более удобным. Возможно выполнение резки и при горизонтальном расположении прожигаемого отверстия (рис. 126).

Для получения отверстий круглой формы копье в процессе резки поворачивают попеременно на пол-оборота в обе стороны.

Материалом копья являются трубки из низкоуглеродистой стали, лучше толстостенные, например 17 /8, 19 /6. Для уменьшения расхода трубок и получения надлежащего проходного сечения для кислорода внутрь трубок закладываются сплошные проволоки диаметром около 5 мм.

Ориентировочные режимы резки кислородным копьем по данным МВТУ им. Баумана приведены в табл. 26.

Возможна флюсо-кислородная резка копьем. В этом случае внутрь стальной трубки вместе с кислородом подается порошкообразный флюс. При резке трубка диаметром V3-V2» не опирается на прожигаемый металл, а поддерживается на некотором расстоянии (50-100 мм) от изделия.

При резке копьем закаливающихся сталей для предотвращения образования трещин рекомендуется общий предварительный подогрев заготовки до 300° С. При резке углеродистых сталей с содержанием С менее 0,4% подогрев не нужен.

Резка копьем применяется для вырезки козлов в металлургическом производстве, удаления прибылей стального литья, образования осевых отверстий в поковках, глубоких отверстий при подрывных работах, отверстий в заготовках большой толщины для последующей разделительной кислородной резки и в других случаях. Находит применение и резка копьем изделий из железобетона.

Подводная кислородная резка

При выполнении судоремонтных, судоподъемных, аварийно-спасательных, восстановительных и строительных работ в ряде случаев применяется подводная кислородная резка.

Нагрев металла при резке под водой обеспечивается путем создания газового пузыря, оттесняющего воду как от пламени, так и от нагреваемого участка металла. В качестве газов для создания такого пузыря могут использоваться неконденсирующиеся в воде газы: азот, кислород, воздух, окись углерода и углекислый газ.

Газовый пузырь образуется под специальным колпаком, смонтированным на рабочем конце резака, в результате создания давления газов, превосходящего по величине гидростатическое давление на данной глубине. Необходимость применения высоких давлений (например, при глубине 15 м более 1,5 кгс/см 2 ) ограничивает применение ацетилена, поэтому в качестве горючих в этом случае используют водород или бензин.

Применение водородно-кислородного подогревательного пламени обеспечивает наилучшее качество резки под водой. Однако в связи с тем, что вода обусловливает весьма интенсивный тепло-отвод, мощность подогревательного пламени под водой должна быть в 5-10 раз больше, чем при резке на воздухе, с соответственным увеличением расхода горючего. Поэтому более удобным является использование в качестве горючего бензина.

Бензино-кислородные горючие смеси для резки под водой создаются без применения испарителей, которые себя в этих условиях не оправдали. Рациональным оказалось применение распылителей бензина (кислородом — по принципу моторного топлива), дающих устойчивое пламя. На рис. 127 представлена конструкция бензореза для резки под водой.

Для зажигания пламени под водой используются специальные электрические запалы, при помощи которых резчик путем замыкания запала на наконечник вызывает искры и воспламенение смеси. Для подводной резки применяется установка БУПР. Рампа кислородных баллонов, бачок с бензином, баллоны с азотом и пульт управления установки располагаются над водой. Техническая характеристика БУПР приведена в табл. 27.

Избыточный бензин, всплывая на поверхность воды, может воспламеняться, поэтому бензокислородная резка неприменима в мелких водоемах и замкнутых пространствах.

Кислородная резка с подогревательным пламенем может использоваться под водой для разделения сплошного металла и пакетов. При суммарной толщине металла до 30 мм можно применять электродуговую резку плавящимся электродом, хотя качество реза при этом значительно хуже. Пакеты также можно прорезать и способом подводной электрокислородной резки, получившим значительное развитие и применение в последнее время.

Электрокислородная резка

Принцип электрокислородной резки заключается в использовании подогревающего действия электрической дуги, горящей между полым стержневым электродом и разрезаемым изделием, и сжигании нагретого металла кислородом, поступающим под необходимым давлением по осевому каналу электрода. Держатель, который применяется в этом случае, обеспечивает электрический контакт с электродом и подачу кислорода.

Для электрокислородной подводной резки применяются как плавящиеся, так и неплавящиеся электроды.

Плавящиеся электроды изготовляются из трубок с наружным диаметром 8 мм, толщиной стенок 2-2,5 мм и длиной около 400 мм. На поверхность такой трубки наносится водоупорное покрытие, которое при плавлении электрода образует чехол, позволяющий опирать электрод на разрезаемое изделие в процессе резки.

Процесс является удобным для работы под водой, в связи с тем, что у водолаза при этом занята только одна рука, но требует большого расхода электродов (

1 шт/мин) и значительного вспомогательного времени на их смену (около 1 мин/шт). В настоящее время имеются специальные установки для подводной резки, обеспечивающие автоматическое снятие напряжения с держателя при гашении дуги, выключение и включение кислорода в зависимости от горения или перерыва в горении дуги.

Читать еще:  Резка бетона водой под давлением

Для электрокислородной подводной резки разработаны карборундовые электроды, которые могут проработать без замены до 40 мин. Однако электрокислородная резка карборундовыми электродами позволяет резать металл толщиной только до 15 мм.

Электрокислородная резка в некоторых случаях применяется не только под водой, но и в обычных условиях. Так, например, при резке на воздухе в качестве неплавящегося электрода могут применяться угольные, а лучше графитовые электроды. Кислород, проходящий по осевому каналу такого электрода, приводит к воспламенению углерода вблизи нагретого дугой конца, что, в свою очередь, подогревает струю кислорода. Поэтому оказывается возможным выполнять резку даже при прерывистом горении дуги, причем в период отсутствия дуги металл толщиной около 10-12 мм можно прорезать непосредственно кислородной струей на длине реза около 150 мм.

Электрокислородная резка не обеспечивает такого высокого качества кромок, как газокислородная, и поэтому применяется только там, где не требуется чистоты реза и где имеются затруднения с горючим для газовой резки. В последнее время находит применение способ электровоздушной резки, когда расплавляемый дугой металл выдувается струей воздуха, подаваемого под соответствующим давлением. В настоящее время для резки, особенно цветных металлов, широкое применение находит механизированная (реже ручная) плазменная резка выплавлением.

Автор: Администрация Общая оценка статьи: Опубликовано: 2012.06.08

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Большая Энциклопедия Нефти и Газа

Подводная резка — металл

Подводная резка металла разрешается лишь после того, как разрезаемая конструкция будет надежно закреплена и падение разрезанных частей будет исключено. Запрещается сваривать и резать конструкции, находящиеся под нагрузкой или давлением. [2]

Подводная резка металла разрешается лишь после того, как разрезаемая конструкция будет надежно закреплена и падение разрезанных частей будет исключено. Запрещается сваривать и резать конструкции, находящиеся под нагрузкой или давлением. [3]

Подводная резка металлов необходима при ремонте судов, подводной части металлических конструкций портовых гидротехнических и других сооружений. Находясь под водой, рабочий-резчик стеснен в своих движениях, так как кроме сопротивления воды и состояния невесомости он одет в специальное водолазное снаряжение. Видимость ограничена, особенно во время резки, когда выделяется значительное количество оксидов железа, образующих бурый раствор в воде, мешающий ориентированию резчика и обзору разрезаемой конструкции. [4]

Подводная резка металла разрешается лишь после того, как разрезаемая конструкция будет надежно закреплена и падение разрезанных частей будет исключено. Запрещается сваривать и разрезать конструкции, находящиеся под нагрузкой или давлением. [5]

Существуют три вида подводной резки металла : газопламенная, дуговая и кислородно-дуговая. При любом способе резка выполняется в газовой среде, которая создается искусственно или возникает естественно в процессе резки. Нагрев металла при резке под водой обеспечивается созданием газового пузыря, который оттесняет воду как от пламени, так и от нагреваемого участка разрезаемого металла. [6]

К работам по подводной резке металла могут допускаться только лица, достигшие 18-летнего возраста, прошедшие медицинское освидетельствование, знающие водолазное дело, специально обученные, хорошо знакомые с устройством и правилами эксплуатации оборудования для резки, а также с техникой и особенностями резки под водой и имеющие специальные удостоверения на право производства этих работ. [7]

При использовании тонкой электродной проволоки а высоких плотностей тока в углекислом газе можно эффективно осуществлять подводную резку металла . [8]

При использовании тонкой электродной проволоки и высоких плотностей тока в углекислом газе можно эффективно осуществлять подводную резку металла . [9]

Для работ на воздухе электрокислородная резка не нашла серьезного производственного применения, что же касается подводных работ, то существенные усовершенствования электрокислородной резки выдвинули ее на первое место среди существующих способов подводной резки металла . [11]

Резку металлическим электродом производят без подачи кислорода. Для подводной резки металла толщиной не выше 20 мм применяют электроды диаметром 5 или 6 мм с обмазкой того же состава, что и для сварки, пропитанной парафином. [12]

Подводную резку применяют при судоремонтных, судоподъемных, аварийно-спасательных, восстановительных и спасательных работах. Существует три вида подводной резки металла : газопламенная, электродуговая и кислородно-дуговая. Наибольшее распространение при газопламенном процессе получили резаки, работающие на жидком горючем, так как не требуется создания вокруг мундштука оболочки из сжатого воздуха. [14]

После окончания ПТУ и получения квалификации сварщика ручной дуговой сварки, работая на заводе строительных материалов или на строительстве, сварщику предстоит выполнять разнообразную работу по ручной дуговой сварке элементов строительных конструкций — колонн, ферм, резервуаров, опор, сосудов, арматуры железобетона и множество других конструкций из стали, цветных металлов и их сплавов. Сварщик должен знать физическую сущность отдельных видов сварки, технологию и технику их выполнения для образования сварных соединений требуемого качества. Он должен также знать аппаратуру и технологию плазменной и воздушно-дуговой и подводной резки металлов и уметь применять ее на практике после сдачи соответствующих испытаний. Поэтому программой подготовки сварщиков предусмотрен, помимо практических занятий, па проведение которых отводится большая часть учебного времени, также курс теоретических занятий по основам сварочного дела. [15]

ПОДВОДНАЯ РЕЗКА МЕТАЛЛОВ

Не очень большую по объёму применения, но важную по зна­чению отрасль сварочной техники образуют методы огневой резки металла под водой. Возможности выполнения человеком под водой различных технических работ пока весьма ограничены и до сравни­тельно недавнего времени исчерпывались применением простейших приспособлений, ручного и пневматического инструмента, взрывча-

тых веществ. Разработка и усовершенствование способов огневой резки и электрической сварки металлов под водой значительно рас­ширили возможности выполнения подводных технических работ: судоремонтных, судоподъёмных, аварийно-спасательных, строитель­ных и т. д.

Подводные работы по огневой резке металла отличаются мно­гими специфическими особенностями, часто сопряжены с исключи­тельными трудностями и значительной опасностью для работающих. Разрезаемый металл погружён в водную среду, интенсивно его охлаждающую, что весьма затрудняет достаточный подогрев ме­талла. Работающий стеснён в своих движениях тяжёлым и неудоб­ным водолазным снаряжением и имеет недостаточную устойчивость. Видимость при подводных работах обычно очень плохая; в боль­шинстве наших рек, особенно при повышении их уровня, видимость практически почти совершенно отсутствует. Кроме того, имеются обычные дополнительные трудности: течение, волнение, значи­

тельные глубины, загрязнения поверхности металла и др. Чаще все­го приходится резать многослойный металл, причём слои пакега нередко расшатаны взрывом или ударом при аварии и т. п. Не­смотря на все эти трудности, героические советские подводники успешно выполняют трудные задания и проводят замечательные работы по резке и сварке металла под водой в труднейших условиях.

Процесс подводной электросварки был рассмотрен в главе I, здесь рассмотрим процессы огневой резки металла под водой. Трудности резки под водой заставляют применять различные спо­собы в зависимости от местных условий. Классификация способов огневой резки металла под водой приведена на диаграмме фиг. 245.

Существующие способы дуговой резки можно разделить на две основные группы: 1) электрическая дуговая резка, являющаяся по преимуществу чисто термическим способом и 2) кислородная резка, где главную роль играет химическая реакция сгорания железа в кислороде.

Электрическая дуговая резка разделяется на виды по типу при — ‘ меняемых электродов. Кислородная резка делится на две под­группы: газокислородную с подогревательным пламенем, образуе­мым горючим газом, и электрокислородную с подогревом металла дугой. Газокислородная резка делится на виды по роду горючего; электрокислородная, как и электрическая дуговая,— по роду при­меняемого электрода.

Простейшим способом является дуговая резка. Этот метод был исследован в годы Отечественной войны автором книги. Дуговая резка под водой чаще всего выполняется металлическим стальным электродом, диаметром 6—7 мм. Для электродных стержней приме­няется торговая проволока — катанка, на которую наносится слой обмазки в количестве около 30% от веса стержня, например, сле­дующего состава: мел 38%; железная окалина 56%; цемент порт — ландский 6%; жидкое стекло (водный раствор) 35 частей на 100 частей сухой смеси.

По просушке и прокалке электродов при температуре 250—300° слой обмазки пропитывается водонепроницаемым составом путём погружения в лак или другой подходящий раствор. Слой обмазки

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×