1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Материалы для газовой сварки и резки металлов

Материалы для газовой сварки и резки металлов

В учебнике кратко описаны основные способы сварки и резки металлов, приведены свойства свариваемых металлов и сварочных материалов, дано описание оборудования и аппаратуры для газовой сварки и резки металлов, технологии газовой сварки и резки, излагаются основные сведения по техническому контролю, организации производства и технике безопасности.
В 5-м издании учебника отражены современные технологические процессы и оборудование для газовой сварки и резки металлов. Из 5-го издания исключен материал по общей технологии металлов, но в книге расширено описание плазменно-дуговой резки.
Книга является учебником для индивидуальной и бригадной подготовки сварщиков на производстве.

Размер: 2,54 Мб
Формат: djvu
Скачать книгу с depositfiles.com
Скачать книгу с narod.ru
Не работает ссылка? Напишите об этом в комментарии.

Оглавление:

Введение.

Глава I. Сварка металлов.
§ 1. Назначение и преимущества сварки.
§ 2. Основные способы сварки.
§ 3. Газовая сварка, ее преимущества, недостатки и область применения.

Глава II. Основные сведения о металлах.
§ 1. Свойства металлов.
§ 2. Чугуны.
§ 3. Стали.
§ 4. Цветные металлы и сплавы.
§ 5. Твердые сплавы.
§ 6. Коррозия металлов.

Глава III. Материалы, применяемые при газовой сварке и резке.
§ 1. Кислород.
§ 2. Карбид кальция.
§ 3. Ацетилен и другие горючие.
§ 4. Сварочная проволока и флюсы.

Глава IV. Оборудование и аппаратура для газовой сварки.
§ I. Ацетиленовые генераторы.
§ 2. Водяные предохранительные затворы и химические очистители.
§ 3. Баллоны для сжатых газов. Вентили для баллонов.
§ 4. Редукторы для сжатых газов.
§ 5. Газораспределительные рампы. Рукава (шланги). Трубопроводы.
§ 6. Сварочные горелки.
§ 7. Обращение с горелками.

Глава V. Технология газовой сварки.
§ 1. Сварочное пламя.
§ 2. Металлургические процессы при газовой сварке.
§ 3. Виды, швов и подготовка кромок.
§ 4. Способы ручной газовой сварки.
§ 5. Деформации и напряжения при газовой сварке.
§ 6. Термическая обработка и правка изделий после сварки.
§ 7. Сварка труб.
§ 8. Наплавка твердых сплавов.

Глава VI. Особенности и режимы сварки различных металлов.
§ 1. Сварка углеродистых сталей.
§ 2. Сварка легированных сталей.
§ 3. Сварка чугуна.
§ 4. Сварка меди.
§ 5. Сварка латуни и бронзы.
§ 6. Сварка алюминия и его сплавов.
§ 7. Сварка прочих металлов.

Глава VII. Кислородная резка металлов.
§ 1. Сущность и основные условия резки.
§ 2 Резаки для ручной резки.
§ 3. Керосинорезы.
§ 4. Специальные резаки.
§ 5. Машины для резки.
§ 6. Техника кислородной резки.

Глава VIII. Специальные способы резки.
§ 1. Кислородно-флюсовая резка.
§ 2. Газо-дуговая резка.
§ 3. Подводная резка.
§ 4. Копьевая резка.

Глава IX. Контроль сварки.
§ 1. Дефекты швов.
§ 2. Виды контроля сварных швов.

Глава X. Организация труда и рабочего места, механизация и автоматизация сварочного производства.
§ 1. Организация труда и рабочего места.
§ 2. Механизация и автоматизация сварочного производства.
§ 3. Нормирование работ по сварке и резке.

Глава XI. Техника безопасности.
§ 1. Вредности и опасности при газовой сварке и резке.
§ 2. Основы техники безопасности при газовой сварке и резке.

Материалы для газовой сварки и резки металлов

Наибольшее применение в промышленности из множества видов газопламенной обработки имеет газовая резка и сварка. Сущность процесса газовой сварки заключается в том, что свариваемый и присадочный металлы расплавляются за счет тепла пламени горелки, получающегося при сгорании какого-либо горючего газа, например, ацетилена. В процессе сварки металл соприкасается с газами пламени, а вне пламени — с окружающей средой, обычно с воздухом. В результате металл подвергается изменениям, характер которых зависит от свойств металла, способа и режима сварки. Наибольшим изменениям подвергается металл, расплавляющийся в процессе сварки. При этом изменяется содержание примесей и легирующих добавок в металле. Одновременно может происходить обогащение его кислородом, в некоторых случаях и водородом, азотом, углеродом.

Одним из наиболее распространенных процессов, происходящих при взаимодействии пламени с металлом, является окисление. При сварке сталей в металле сварочной ванны образуется закись железа FeO, которая реагирует с кремнием и марганцем внутри сварочной ванны; вредные примеси выводятся в шлак, либо удаляются в виде газов.

Для предотвращения окисления кромок металла и извлечения из жидкого металла окислов и неметаллических включений применяются флюсы. Расплавленные флюсы в основном не растворимы в металле и образуют на поверхности металла пленку шлака. Шлак предохраняет металл от воздействия газов пламени и атмосферных газов.

В процессе газовой сварки, кроме расплавления металла сварочной ванны происходит нагрев и основного свариваемого металла до достаточно высоких температур, приближающихся к температуре плавления на границе раздела со сварочной ванной. Поэтому при сварке одновременно происходит ряд сложных процессов, связанных с расплавлением металла, его взаимодействием с газами и шлаками, последующей кристаллизацией, а также с нагревом и охлаждением металла в твердом состоянии как в пределах шва, так и основном металле и в зоне термического влияния.

Расплавленный металл сварочной ванны представляет сплав основного и присадочного металлов. В результате взаимодействия газов пламени и флюсов он изменяет свой состав. По мере удаления пламени горелки металл кристаллизуется в остывшей части ванны. Закристаллизовавшийся металл сварочной ванны образует металл шва. Шов имеет структуру литого металла с вытянутыми укрупненными кристаллами, направленными к центру шва.

Кислородная резка стали основана на свойстве железа гореть в струе чистого кислорода, будучи нагретым до температуры, близкой к температуре плавления. Температура загорания железа в кислороде зависит от состояния, в котором он находится. Например, железный порошок загорается при 315°С, тонкое полосовое и листовое железо — при 930°С, а поверхность крупного куска стали — при 1200-1300°С. Горение железа происходит с выделением тепла, и резка может поддерживаться за счет теплоты сгорания железа.

При резке нагревание производят газокислородным пламенем. В качестве горячих газов при резке используют ацетилен, пропан-бутан, пиролизный, природный, коксовый, городской газ, а также керосин. Кроме подогрева металла до температуры горения в кислороде, подогревающее пламя выполняет и некоторые дополнительные функции:

  • подогревает переднюю кромку реза впереди струи режущего кислорода до температуры воспламенения, что обеспечивает непрерывность резки;
  • вводит в зону реакции окисления дополнительное тепло;
  • создает защитную оболочку вокруг режущей струи кислорода.

Мощность пламени зависит от толщины и состава разрезаемой стали и температуры металла перед резкой. Металл нагревают на узком участке в начале реза, а затем на нагретое место направляют струю режущего кислорода, одновременно передвигая резак по размеченной линии реза. Металл сгорает по всей толщине листа, в котором образуется узкая щель. Интенсивное горение железа в кислороде происходит только в слоях, приграничных с поверхностью режущей струи кислорода, проникающей в металл на очень малую глубину. Чтобы ускорить процесс резки желательно применить подогрев. Для заготовительной резки стали применяют чистый кислород (98,5-99,7%).

Скорость резки, толщина металла, расход ацетилена в подогревающем пламени и эффективная мощность пламени связаны между собой определенной зависимостью. Для процесса резки металла кислородом необходимы следующие условия:

  • температура горения металла в кислороде должна быть ниже температуры плавления, иначе металл будет плавиться и переходить в жидкое состояние до того, как начнется его горение в кислороде;
  • образующиеся окислы металла должны плавиться при температуре более низкой, чем температура горения металла, и не быть слишком низкими (в противном случае необходимо применять флюсы);
  • количество тепла, выделяющееся при сгорании металла в кислороде, должно быть достаточным, чтобы обеспечить поддержание процесса резки; теплопроводность металла не должна быть высокой, иначе процесс резки может прерваться из-за интенсивного теплоотвода.

Большую роль при сварке и резке имеет дистанция от ядра пламени до металла. Так, например, при автоматической резке используется специальное оборудование для установки точного расстояния горелки до металла.

Способы газовой сварки и резки металлов

Газовую сварку широко применяют для изготовления конструкций из тонких листов стали, при ремонтной сварке чугунных, алюминиевых и бронзовых литых изделий, для монтажа трубопроводов и фасонных частей к ним, в наплавке цветных металлов на стальные и чугунные детали, пайкосварке высокопрочных и ковких чугунов. Этим видом сварки можно соединять практически все металлы, используемые в техническом производстве.

Преимущества газовой сварки

Простое в эксплуатации оборудование, не зависимое от источников энергоснабжения, широкий диапазон регулировки скоростей нагревания и охлаждения металлов делают сварку в газовой среде незаменимой для ремонтных, строительных, монтажных видов работ. Аппаратура для такой сварки состоит из баллона кислорода, емкости горючего газа либо генератора ацетилена, редукторы для них, газовую горелку с рукавами для подачи в нее кислорода и прочих газов.

Читать еще:  Резка бетона без пыли своими руками

При проведении работ по сварке необходим кислород газообразный, получаемый посредством его охлаждения из атмосферного воздуха, поставляемый к потребляющему оборудованию под действием давления в металлическом баллоне. Они, также как и все прочие газовые баллоны для сварки, являются стальными цилиндрами с круглым дном и приспособленной под крепеж запорного устройства горловиной. Конструкция такого вентиля различна для каждого вида газа.

Редукторы, которые используются в составе сварочного оборудования, призваны понижать давление газов для газовой сварки (ацетилена с кислородом). Обычно они оснащаются двумя видами манометров для измерения газового давления при вхождении в редуктор и на выходе из него. Функциональное давление газа определяется степенью натяжения пружин редуктора, его регулировку проводят с помощью специального винта и резьбы.

Рукава для газовой сварки стандартизованы в трех вариантах: шланги для подачи кислорода, жидких видов топлива (бензиновые либо керосиновые) и ацетиленовые рукава. Внешне они отличаются расцветкой: красные предназначены под ацетилен, желтые – под жидкое топливо, а синие (голубые) – под кислород. Каждый шланг, имея внутреннюю резиновую камеру с оплеткой нитями, покрыт слоем резины снаружи.

В виде смесей газов для сварки могут присутствовать природные газы, керосиновые и бензиновые пары, ацетилен, нефтяные газы, водород. Все они используются в кислородной резке, для которой не требуется высокотемпературное пламя. Для данного вида сварки лучше всего подходит ацетилен, больше прочих газов способный к теплотворности с созданием высоких температур сгорания.

Технология и оборудование для газовой сварки

Проводится сварка газовой горелкой – главным инструментом в работе по газовым операциям нагревания, наплавки, пайки, сварки. Вне зависимости от конструктивного устройства все горелки обеспечивают смешение газов в необходимых пропорциях, их подачу в зону образования пламени, его устойчивое горение с регулировкой состава в пропорциях горючих газов с кислородом. Горелки, применяемые при газовой сварке металлов, подразделяются на классы инжекторных и безынжекторных. В первых газы поступают с низким давлением путем подсоса их струей кислорода, а во вторых – горючие газы вместе с кислородом подаются с равным давлением.

Технология газовой сварки предполагает создание прочных соединений посредством сплавления кромок заготовок с присадочными материалами под воздействием теплоты пламени от сжигания газов. Проводят сварку конструкций из тонколистовых металлов без использования присадочного материала посредством плавления предварительно обработанных кромок. Технику газовой сварки отличают универсальность и простая эксплуатация, не требующая дорогой аппаратуры. Она равно эффективна в быту, промышленности, в строительных, монтажных работах и производствах по ремонту.

Подготовка заготовок при газовой резке и сварке предполагает манипуляции по очистке кромок, их разделке, сборке с наложением в случае необходимости прихваток. Разделывание кромок проводят по-разному, исходя из толщин соединяемых заготовок. Также предусмотрена механическая обработка деталей под сварку с помощью гильотинных ножниц, строгальных и фрезерных станков. Реже используются в этих целях пневматические зубила. Для небольших деталей возможна обработка соединяемых кромок изделия вручную при помощи напильника. Углы разделывания обязательно сверяются специальными шаблонами.

Использование прихваток при сварке в среде защитных газов требуется для сохранения постоянства положений соединяемых заготовок с зазорами около них на протяжении всего сварочного процесса. Делается это очень тщательно и с теми же режимами газовой сварки, что предусмотрены для шва. Возможный непровар при наложении прихваток приводит к дефектам сварного соединения в целом. Исключение составляет сварка меди, при которой использование предварительных прихваток не рекомендуется. Это может вызывать при повторном нагревании металла появление трещин на месте прихватки. Медные детали перед сваркой необходимо закрепить в особом приспособлении либо кондукторе.

Выделяют два основополагающих способа газовой сварки. Это так называемые «левая» и «правая» сварки. Первый из них предполагает передвижение горелки газосварщиком в направлении справа налево. Причем присадочный материал двигается вперед горелки. Направление горелки с прутком зигзагообразными движениями поперечно к шву способствует хорошему прогреванию металла с проплавлением сварочной ванны. Поэтому левый способ эффективен при сварочных работах на легкоплавких металлах и тонколистных заготовках.

Оборудование для газовой сварки с использованием правого способа двигают прямо без совершения колебательных движений в направлении слева направо. Направляемое на расплав сварочной ванны пламя горелки перемещается вперед присадочного прутка. Данный способ позволяет более эффективно пользоваться теплом пламени. Остывание металла при этом способе происходит медленнее, чем в левом. Результатом этого служат меньший расход газа, довольно высокая производительность работ из-за меньших углов разделывания кромок, хорошие показатели надежности сварного шва. Таким способом варят сплавы металлов высокой теплопроводности, например, латунных и медных, и заготовки толще 5 мм. Малоуглеродистые и низколегированные стали газовой сваркой соединяются достаточно хорошо. Для средне- и высоколегированных сталей эффективнее употребление способа дугового сваривания.

В ходе сварки возможно передвижение горелки по линии шва, полумесяцем, прямолинейно, по спирали. Совершение горелкой зигзагообразных движений способствует нужной ширине с прогревом кромок как основного, так и присадочного материалов. Скорость их нагревания регулируют, изменяя угол наклона горелки к свариваемой поверхности детали.

Выбирая режим сварки, учитывают теплофизические характеристики соединяемых материалов, форму изделия и его габаритные размеры. Немалое значение при выборе режима, особенно в газовой сварке труб, имеют положение сварного шва в пространстве и используемый способ сварки деталей. Среднечасовой расход газов (или мощность пламени) вычисляется с учетом толщины свариваемых заготовок. А состав пламени определяют из соотношения расходов горючего газа с кислородом. Рассчитав мощность пламени, необходимую для сварки определенного металла, по паспортным характеристикам горелки будет несложно выбрать для нее соответствующий наконечник.

Технология газовой сварки металлов, оборудование и материалы и процесс выполнения работ

Способ газовой сварки был разработан в конце 19 века, когда началось промышленное производство кислорода, водорода и ацетилена. В тот период газовая сварка являлась основным способом сварки металлов и обеспечивала получение наиболее прочных сварных соединений. В дальнейшем, с созданием и внедрением высококачественных электродов для дуговой сварки, автоматической и полуавтоматической дуговой сварки под флюсом и в среде защитных газов (аргона, гелия и углекислого газа и др.), газовая сварка была постепенно вытеснена из многих производств этими способами электрической сварки. Тем не менее, и до настоящего времени газовая сварка металлов наряду с другими способами сварки широко применяется в промышленности.

Газовая сварка, ее преимущества и недостатки

Газовая сварка относится к сварке плавлением. Процесс газовой сварки состоит в нагревании кромок деталей в месте их соединения до расплавленного состояния пламенем сварочной горелки. Для нагревания и расплавления металла используется высокотемпературное пламя, получаемое при сжигании горючего газа в смеси с технически чистым кислородом. Зазор между кромками заполняется расплавленным металлом присадочной проволоки.

Газовая сварка обладает следующими преимуществами: способ сварки сравнительно прост, не требует сложного и дорогого оборудования, а также источника электроэнергии. Изменяя тепловую мощность пламени и его положение относительно места сварки, сварщик может в широких пределах регулировать скорость нагрева и охлаждения свариваемого металла.

К недостаткам газовой сварки относятся меньшая скорость нагрева металла и большая зона теплового воздействия на металл, чем при дуговой сварке. При газовой сварке концентрация тепла меньше, а коробление свариваемых деталей больше, чем при дуговой сварке. Однако при правильно выбранной мощности пламени, умелом регулировании его состава, надлежащей марке присадочного металла и соответствующей квалификации сварщика газовая сварка обеспечивает получение высококачественных сварных соединений.

Благодаря сравнительно медленному нагреву металла пламенем и относительно невысокой концентрации тепла при нагреве производительность процесса газовой сварки существенно снижается с увеличением толщины свариваемого металла. Например, при толщине стали 1мм, скорость газовой сварки составляет около 10м/ч, а при толщине 10мм – только 2м/ч. Поэтому газовая сварка стали толщиной свыше 6мм менее производительна по сравнению с дуговой сваркой и применяется значительно реже.

Стоимость горючего газа (ацетилена) и кислорода при газовой сварке выше стоимости электроэнергии при дуговой и контактной сварке. Вследствие этого газовая сварка обходится дороже, чем электрическая.

При помощи газовой сварки можно сваривать почти все металлы, применяемые в технике. Такие металлы, как чугун, медь, латунь, свинец легче поддаются газовой сварке, чем дуговой. Если учесть еще простоту оборудования, то становится понятным широкое распространение газовой сварки в некоторых областях деятельности (на заводах машиностроения, сельском хозяйстве, ремонтных, строительно-монтажных работах и др.).

Для газовой сварки необходимо:

  1. Газы – кислород и горючий газ (ацетилен или его заменитель);
  2. Присадочная проволока (для сварки и наплавки);
  3. Соответствующее оборудование и аппаратура, в том числе:
    а) кислородные баллоны для хранения запаса кислорода;
    б) кислородные редукторы для понижения давления кислорода, подаваемого из баллонов в горелку или резак;
    в) ацетиленовые генераторы для получения ацетилена из карбида кальция или ацетиленовые баллоны, в которых ацетилен находится под давлением и растворен в ацетилене;
    г) сварочные, наплавочные, закалочные и другие горелки с набором наконечников для нагрева метла различной толщины;
    д) резиновые рукава (шланги) для подачи кислорода и ацетилена в горелку;
  4. Принадлежности для сварки: очки с темными стеклами (светофильтрами) для защиты глаз от яркого света сварочного пламени, молоток, набора ключей для горелки, стальные щетки для очистки металла и сварочного шва;
  5. Сварочный стол или приспособление для сборки и закрепления деталей при прихватке, сварки;
  6. Флюсы или сварочные порошки, если они требуются для сварки данного металла.
Читать еще:  Инструмент для резки жести

Материалы, применяемые при газовой сварке

Кислород

Кислород при атмосферном давлении и обычной температуре газ без цвета и запаха, несколько тяжелее воздуха. При атмосферном давлении и температуре 20 гр. масса 1м3 кислород равен 1.33 кг. Сгорание горючих газов и паров горючих жидкостей в чистом виде кислороде происходит очень энергично с большой скоростью, а возникновение в зоне горения возникает высокая температура.

Для получения сварочного пламени с высокой температурой, необходимо для быстрого расплавления металла в месте сварки, горючий газ или пары горючей жидкости сжигают в смеси с чистым кислородом.

При возникновении сжатого газообразного кислорода с маслом или жирами последние могут самовоспламеняться, что может быть причиной пожара. Поэтому при обращении с кислородными баллонами и аппаратурой необходимо тщательно следить за тем, чтобы на них не падали даже незначительные следы масла и жиров. Смесь кислорода с горючих жидкостей при определенных соотношениях кислорода и горючего вещества взрывается.

Технический кислород добывают из атмосферного воздуха который подвергают обработке в воздухоразделительных установках, где он очищается от углекислоты и осушается от влаги.

Жидкий кислород хранят и перевозят в специальных сосудах с хорошей теплоизоляцией. Для сварки выпускают технический кислород трех сортов:
высшего, чистотой не ниже 99.5%
1-ого сорта чистотой 99.2%
2-ого сорта чистотой 98.5% по объему.
Остаток 0.5-0.1% составляет азот и аргон

Ацетилен

В качестве горючего газа для газовой сварки получил распространение ацетилен соединение кислорода с водородом. При нормальной температуре и давлением ацетилен находится в газообразном состоянии.
Ацетилен бесцветный газ. В нем присутствуют примеси сероводорода и аммиак.
Ацетилен есть взрывоопасный газ. Чистый ацетилен способен взрываться при избыточном давлении свыше 1.5 кгс/см2, при быстром нагревании до 450-500С. Смесь ацетилена с воздухом взрываться при атмосферном давлении, если в смеси содержится от 2.2 до 93% ацетилена по объему. Ацетилен для промышленных целей получают разложением жидких горючих действием электродугового разряда, а так же разложением карбида кальция водой.

Сварочные проволоки

В большинстве случаев при газовой сварке применяют присадочную проволоку близкую по своему хим. составу к свариваемому металлу.
Нельзя применят для сварки случайную проволоку неизвестной марки.
Поверхность проволоки должна быть гладкой и чистой без следов окалины, ржавчины, масла, краски и прочих загрязнений. Температура плавления проволоки должна быть равна или несколько ниже to плавления металла.

Проволока должна плавится спокойно и равномерно, без сильного разбрызгивания и вскипания, образуя при застывании плотный однородный металл без посторонних включений и прочих дефектов.

Для газовой сварки цветных металлов (меди, латуни, свинца), а так же нержавеющей стали в тех случаях, когда нет подходящей проволоки, применяют в виде исключения полоски металла, нарезанные из листов той же марки, что и свариваемый металл.

Аппаратура и оборудование для газовой сварки

Баллон для сжатых газов

Баллоны для кислорода и других сжатых газов представляют собой стальные цилиндрические сосуды. В горловине баллона сделано отверстие с конусной резьбой, куда ввертывается запорный вентиль. Баллоны бесшовные для газов высоких давлений изготавливают из Турб углеродистой и легированной стали. Баллоны окрашивают снаружи в словные цвета, в зависимости от рода газа. Например, кислородные баллоны в голубой цвет, ацетиленовые в белый водородные в желто-зеленый для прочих горючих газов в красный цвет.

Верхнею сферическую часть баллона не окрашивают и на ней выбивают паспортные данные баллона. Баллон на сварочном посту устанавливают вертикально и закрепляю хомутом.

Вентили для баллонов

Вентили кислородных баллонов изготавливают из латуни. Сталь для деталей вентиля применять нельзя так как она сильно коррозирует в среде сжатого влажного кислорода.

Ацетиленовые вентили изготавливают из стали. Запрещается применять медь и сплавы, содержащие свыше 70% меди, так как с медью ацетилен может образовывать взрывчатое соединение – ацетиленовую медь.

Редукторы для сжатых газов

Редукторы служат для понижения давления газа, отбираемого из баллонов (или газопровода), и поддержания этого давления постоянным независимо от снижения давления газа в баллоне. Принцип действия и основные детали у всех редукторов примерно одинаковы.

По конструкции бывают редукторы однокамерные и двухкамерные. Двухкамерные редукторы имеют две камеры редуцирования, работающие последовательно, дают более постоянное рабочее давление и менее склонны к замерзанию при больших расходах газа.

Шланги

Рукава (шланги) служат для подвода газа в горелку. Они должны обладать достаточной прочностью, выдерживать давление газа, быть гибкими и не стеснять движений сварщика. Шланги изготовляют из вулканизированной резины с прокладками из ткани. Выпускаются рукава для ацетилена и кислорода. Для бензина и керосина применяют шланги из бензостойкой резины.

Сварочные горелки

Сварочная горелка служит основным инструментом при ручной газовой сварке. В горелке смешивают в нужных количествах кислород и ацетилен. Образующаяся горючая смесь вытекает из канала мундштука горелки с заданной скоростью и, сгорая, дает устойчивое сварочное пламя, которым расплавляют основной и присадочный металл в месте сварки. Горелка служит также для регулирования тепловой мощности пламени путем изменения расхода горючего газа и кислорода.

Газы для газовой сварки и резки металлов. Газовые смеси для сварки

В качестве горючих газов для газовой сварки применяют ацетилен, водород, природный газ и другие. Также применяются газовые смеси для сварки, такие как нефтяной газ, пропанобутановая газовая смесь, пиролизный газ. Кроме того, для газовой сварки используют пары горючих жидкостей — бензина и керосина.

В таблице представлены наиболее распространенные газы и газовые смеси для газовой сварки и газовой резки, указаны их основные свойства и область применения:

Выбор того, или иного газа для сварки зависит не только от температуры пламени, но и от количества теплоты (теплотворной способности), которое получается при его сгорании. Коэффициент замены ацетилена, указанный в таблице, это отношение расхода газа-заменителя к расходу ацетилена при одинаковой эффективной тепловой мощности. Данный коэффициент необходим, если потребуется заменить ацетилен другим горючим газом.

Ацетилен для газовой сварки

Ацетилен — один из самых распространённых газов, применяемых для газовой сварки. Наибольшее распространение ацетилен получил из-за того, что ацетиленокислородное газовое пламя имеет наибольшую температуру, по сравнению с другими горючими газами и газовыми смесями (см. таблицу выше).

Ацетилен образуется при взаимодействии карбида кальция CaC2 с водой. Карбид кальция способен поглощать влагу из атмосферы и разлагаться под её воздействием. Поэтому, его хранят в герметичных барабанах из кровельной стали. Вместимость таких барабанов составляет 100-130кг. Получают карбид кальция при сплавлении в электропечах кокса и обожжённой извести:

CaO + 3C = CaС2 + CO

Ацетилен С2Н2 представляет собой химическое соединение углерода с водородом. Для получения ацетилена используют ацетиленовые генераторы, в которые загружают карбид и воду. Химическое взаимодействие карбида кальция и воды протекает интенсивно, с большим выделением теплоты Q:

Из 1кг карбида кальция можно получить до 300л ацетилена. При нормальных условиях ацетилен бесцветен и обладает резким специфическим запахом. Ацетилен легче воздуха, его плотность составляет 1,09кг/м3.

Ацетилен взрывоопасен, если он находится в смеси с воздухом и его концентрация составляет 2,2-81% по объёму. В смеси с кислородом ацетилен взрывоопасен, при его концентрации 2,8-93% по объёму. Наиболее взрывоопасны ацетиленокислородные смеси, содержащие 7-13% ацетилена.

При растворении в жидкости взрывоопасность ацетилена существенно снижается. На практике ацетилен растворяют в ацетоне, 1л которого способен растворить до 20л ацетилена. Об этом мы говорили в статье: «Газовые баллоны для сварки. Газосварочные баллоны».

Кроме карбида кальция, источниками ацетилена являются природный газ, нефть и уголь. Полученный из природного газа, ацетилен называется пиролизным.

Водород для газовой сварки

Водород представляет собой бесцветный газ, не имеющий запаха. При смешивании с кислородом или воздухом образует «гремучий газ», который является взрывоопасным. Поэтому, в случае применения водорода для сварки металлов, необходимо строго придерживаться правил безопасности при его хранении, транспортировании и использовании.

Водород хранят и транспортируют в стальных газосварочных баллонах при давлении, не превышающем 15МПа. Получить его можно, разлагая воду на водород и кислород при помощи электролиза. Также водород синтезируют в специальных водородных генераторах путём химической реакции серной кислоты H2SO4 и цинка, либо железной стружки. При этом образуются сульфаты цинка или железа, а освободившийся водород скапливается внутри генератора.

Читать еще:  Инструмент для резки металлочерепицы

Коксовый газ для сварки

Коксовый газ представляет собой бесцветную смесь горючих газов с резким запахом сероводорода. Получают коксовый газ в процессе выработки кокса из каменного угля. В состав коксового газа входят водород, метан и другие углеводороды. Транспортировка этого газа происходит по трубопроводам.

Городской газ и природный газ для сварки

Городской газ состоит из нескольких газов: метан 70-95%, водорода, объёмная доля которого может достигать 25%, тяжёлых углеводородов с их объёмной долей до 1%, азота 3% и углекислого газа до 1%. Транспортирование городского газа происходит по трубопроводам под давлением 0,3МПа.

Природный газ добывается из газовых месторождений. Его основой является метан СН4, содержание которого в природном газа составляет 93-99%.

Нефтяной газ, природный газ и пропанобутановая смесь для газовой сварки

Пиролизный газ представляет собой смесь горючих газов, образующихся при распаде нефти, мазута и других нефтепродуктов при воздействии на них высоких температур. В состав пиролизного газа входят сернистые соединения, которые вызывают коррозию мундштуков в газовых сварочных горелках. Поэтому, перед применением этот газ проходит тщательную очистку.

Нефтяной газ — является побочным продуктом нефтеперерабатывающих предприятий. Он используется, в основном, для резки и сварки металлов малой толщины и для сварки цветных металлов.

Пропанобутановые смеси являются бесцветными смесями, не имеющими запаха. Состоят они из пропана С3Н8 и бутана С4Н10. Эта смесь обладает наибольшей теплотворной способностью, т.е., при её сгорании выделяется наибольшее количество теплоты.

Бензин и керосин для газовой сварки

Бензин и керосин являются продуктами переработки нефти. Они представляют собой бесцветные жидкости со специфическим запахом и легко испаряются. Применяют их при газопламенной обработке, подавая их в виде паров. Для этого в сварочных резаках или горелках предусматривают специальные испарители, которые преобразуют бензин и керосин из жидкого состояния в парообразное. Испарители нагреваются от вспомогательного пламени или при помощи электричества.

Кислород для газовой сварки

Кислород для газовой сварки необходим, чтобы обеспечить сгорание горючих газов или паров горючей жидкости. Кислород несколько тяжелее воздуха и его плотность составляет 1,33кг/м3. Кислород очень активен химически и он поддерживает горение газов при газовой сварке, образовывая, при этом, большое количество теплоты.

Кислород хранят и транспортируют в кислородных газовых баллонах под давлением 15МПа. Баллон объёмом 40л способен под давлением 15МПа хранить до 6м3 кислорода. Кроме газовых баллонов, кислород может поставляться к месту сварки в жидком состоянии в специальных ёмкостях.

Для переходя жидкого кислорода в газообразный, применяют газификаторы и насосы с испарителями для жидкого кислорода. К сварочным постам для газовой сварки кислород подаётся по газопроводу. Транспортировка кислорода в газообразном состоянии позволяет уменьшить объём транспортировочной тары, приблизительно, в 10 раз, т.к. из 1л жидкого кислорода, при нормальных условиях, получается 860л газообразного кислорода.

Согласно ГОСТ 5583, для газокислородной сварки и резки металлов применяют технический кислород, который бывает трёх сортов. Первый сорт имеет чистоту 99,7% кислорода. Второй сорт с чистотой 99,5 кислорода. Третий сорт содержит не менее 99,2% кислорода по объёму.

Чистота кислорода имеет большое значение для газовой сварки и резки металлов. При снижении чистоты кислорода на 1%, качество сварки снижается и увеличивается расход кислорода, приблизительно на 1,5%.

Материалы, применяемые при газовой сварке

Газы для сварки

Кислород при атмосферном давлении и обычной температуре газ без цвета и запаха, несколько тяжелее воздуха. При атмосферном давлении и температуре 20 гр. масса 1 м3 кислород равен 1.33 кг. Сгорание горючих газов и паров горючих жидкостей в чистом виде кислороде происходит очень энергично с большой скоростью, а возникновение в зоне горения возникает высокая температура.

Для получения сварочного пламени с высокой температурой, необходимо для быстрого расплавления металла в месте сварки, горючий газ или пары горючей жидкости сжигают в смеси с чистым кислородом.

При возникновении сжатого газообразного кислорода с маслом или жирами последние могут самовоспламеняться, что может быть причиной пожара. Поэтому при обращении с кислородными баллонами и аппаратурой необходима тщательно следить за тем,чтобы на них не падали даже незначительные следы масла и жиров. Смесь кислорода с горючих жидкостей при определенных соотношениях кислорода и горючего вещества взрывается.

Технический кислород добывают из атмосферного воздуха который подвергают обработке в воздух разделительных установках, где он очищается от углекислоты и осушается от влаги.

Жидкий кислород хранят и перевозят в специальных сосудах с хорошей теплоизоляцией. Для сварки выпускают технический кислород трех сортов:

высшего, чистотой не ниже 99.5%

1-ого сорта чистотой 99.2%

2-ого сорта чистотой 98.5% по объему.

Остаток 0.5-0.1% составляет азот и аргон

Ацетилен

В качестве горючего газа для газовой сварки получил распространение ацетилен соединение кислорода с водородом. При нормальной температуре и давлением ацетилен находится в газообразном состоянии.

Ацетилен бесцветный газ. В нем присутствуют примеси сероводорода и аммиак.

Ацетилен есть взрывоопасный газ. Чистый ацетилен способен взрываться при избыточном давлении свыше 1.5 кгс/см2, при быстром нагревании до 450-500 С. Смесь ацетилена с воздухом взрываться при атмосферном давлении, если в смеси содержится от 2.2до 93% ацетилена по объему. Ацетилен для промышленных целей получают разложением жидких горючих действием электродугового разряда, а так же разложением карбида кальция водой.

Газы заменители ацетилена

При сварке металлов можно применять другие газы и пары жидкостей. Для эффективного нагрева и расплавления металла при сварке необходимо чтобы to пламени была примерно в два раза превышала to плавления свариваемого металла.

Для сгорания горючих различных газов требуется различное кол-во кислорода подаваемого в горелку.

Газы заменители ацетилена применяют во многих отраслях промышленности. Поэтому их производство и добыча в больших масштабах и они являются очень дешевыми, в этом их основное преимущество перед ацетиленом.

Вследствие более низкой to пламени этих газов применение их ограничено некоторыми процессами нагрева и плавления металлов.

При сварке же стали с пропаном или метаном приходится применять сварочную проволоку содержащею повышенное количество кремния и марганца, используемых в качестве раскислителей, а при сварке чугуна и цветных металлов использовать флюсы.

Газы– заменители с низкой теплопроводной способностью не экономично транспортировать в баллонах. Это ограничивает их применение для газопламенной обработки.

Горючие газы для сварки и резки

Горючие газыТемпература пламени при сгорании в кислороде, 0 СКоэффициент замены ацетилена
Ацетилен31501,05
Водород2400-26005,2
Метан2400-25001,6
Пропан2700-28000,6
Пары керосина2400-24501-1,3

Сварочные проволоки и флюсы

В большинстве случаев при газовой сварке применяют присадочную проволоку близкую по своему хим. составу к свариваемому металлу.

Нельзя применят для сварки случайную проволоку неизвестной марки.

Поверхность проволоки должна быть гладкой и чистой без следов окалины, ржавчины, масла,краски и прочих загрязнений. Температура плавления проволоки должна быть равна или несколько ниже температуры плавления металла.

Проволока должна плавится спокойно и равномерно, без сильного разбрызгивания и вскипания,образуя при застывании плотный однородный металл без посторонних включений и прочих дефектов.

Для газовой сварки цветных металлов (меди, латуни, свинца), а так же нержавеющей стали в тех случаях, когда нет подходящей проволоки, применяют в виде исключения полоски нарезанный из листов той же марки, что и сваривает металл.

Флюсы

Медь, алюминий, магний и их сплавы при нагревании в процессе сварки энергично вступают в реакцию с кислородом воздуха или сварочного пламени (при сварке окислительным пламенем), образуя окислы, которые имеют более высокую toплавления, чем металл. Окислы покрывают капли расплавленного металла тонкой пленкой и этим сильно затрудняют плавление частиц металла при сварке.

Для защиты расплавленного металла от окисления и удаления образующихся окислов применяют сварочные порошки или пасты, называемые флюсами. Флюсы, предварительно нанесенные на присадочную проволоку или пруток и кромки свариваемого металла, при нагревании расплавляются и образуют легкоплавкие шлаки, всплывающие на поверхность жидкого металла. Пленка шлаков покрывает поверхность расплавленного металла, защищая его от окисления.

Состав флюсов выбирают в зависимости от вида и свойств свариваемого металла.

В качестве флюсов применяют прокаленную буру, борную кислоту. Применение флюсов необходимо при сварке чугуна и некоторых специальных легированных сталей, меди ее сплавов. При сварке углеродистых сталей не применяют.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector