7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Кислородно копьевая резка

Кислородно копьевая резка

Цветные металлы и их сплавы, чугуны, нержавеющие хромистые и хромоникелевые стали невозможно разрезать обычной газокислородной резкой. Для этого надо использовать плазменно-дуговую, а лучше кислородно-флюсовую резку-Сущность последней состоит в том, что в зону резания с помощью специальной аппаратуры непрерывно поступает порошкообразный флюс совместно с режущим кислородом. Флюс сгорает и расплавляет образующиеся тугоплавкие оксиды-Кроме того, флюс переводит оксиды в жидкотекучие шлаки, легко вытекающие из места разреза.

Рис. 133. Положение инструмента при резке металла большой толщины: а — перед началом резки; б — перед окончанием резки

Данная резка применяется, главным образом, для работы с чугуном и высоколегированными сталями толщиной до 70 мм.

В качестве флюса применяется мелкогранулированный железный порошок марки ПЖ5М (ГОСТ 9849-74) с размерами частиц от 0,07 до 0,16 мм (используется для резки чугуна и меди). Для резки нержавеющих сталей к указанному порошку добавляют 10-12% алюминиевого порошка марки АПВ. Можно использовать и алюминиево-магниевый порошок (60-80%) в смеси с ферросилицием (20-40%). При резке хромистых и хромонике-левых сталей используется железный порошок ПЖ5М с добавкой 25-50% окалины. При резке чугуна можно добавить к этому порошку 30-35% доменного феррофосфора. Смесь железного порошка с алюминиевым порошком (15-20%) и феррофосфором U0-15%) применяется при резке меди и ее сплавов.

Данная резка осуществляется установкой УРХС-5, состоящей из резака и флюсопитателя Установка может разрезать ручным или машинным способом высоколегированные хромоникелевые и хромистые стали толщиной 10-200 мм при скорости резания 230-760 мм/мин. На 1 м разреза расход кислорода составляет 0,20-2,75 м3, ацетилена — 0,017-0,130 м3 и флюса — 0,20-1,3 кг. Чугун толщиной 50 мм режется со скоростью 70-100 мм/мин при расходе на 1 м разреза 2-4 м3 кислорода, 0,16-0,25 м3 ацетилена и 3,5-6 кг флюса. При резке сплавов меди получают приблизительно такие же параметры.

Следует учитывать, что мощность подогревающего пламени нужно повысить на 15-25% по сравнению с обычной газовой резкой, так как определенная часть теплоты этого пламени будет уходить на нагревание флюса. Пламя должно быть нормальным или с незначительным избытком ацетилена. От торца мундштука резака до поверхности металла должно быть расстояние в 15-25 мм. При малом расстоянии возможны хлопки и обратные удары пламени из-за отскакивания частиц флюса от поверхности и попадания их в сопло резака. Кроме того, может быть перегрев мундштука и вследствие этого нарушение процесса резки. Угол наклона инструмента следует сделать в 1-10° в сторону, обратную направлению к резки. Для облегчения процесса резки сплавы меди нужно предварительно подогревать до 200-50 “С, а хромистые и хромоникелевые стали — до 300-400 °С.

На практике довольно часто производится резка бетона и железобетона. Она выполняется 2 способами: кислородно-копьевой и порошково-копьевой резками.

Кислородно-копьевая резка очень хорошо прожигает отверстия в бетоне. Она позволяет получить отверстия глубиной до 4 м при диаметре до 1,2 м. Этой резкой можно с успехом прижигать отверстия в стальной заготовке.

При данном способе используется стальная труба (копье), один конец которой разогревается до температуры оплавления и приставляется к поверхности бетона. Через копье продувается кислород, который, взаимодействуя с раскаленным торцом трубы восстанавливается. При этом возникают жидкотекучие оксиды железа, реагирующие с бетоном и превращающиеся в шлаки, которые затем легко выдуваются. Продвигая трубу вперед, можно прожечь требуемое отверстие в бетоне.

В качестве копья можно использовать газовую тонкостенную трубу диаметром 10-20 мм, заполненную стальными прутками на 60-65% ее объема или обмотанную снаружи стальной проволокой диаметром 3-4 мм, а также цельнотянутую толстостенную трубу диаметром 20-35 мм. Проволока и прутки выполняют при такой резке ту же функцию, что и флюс при кислородно-флюсовой резке. Копье нагревается, как правило, угольным электродом или горелкой.

Порошково-копьевая резка характеризуется тем, что при ней используется железо-алюминиевый порошок в соотношении 85 : 25. Как и флюс, этот порошок вдувается струей кислорода в зону резания. Параметры выполняемой работы при этом могут быть следующими. Так, например, при прожигании отверстия диаметром 50 мм и глубиной 500 мм, скорость продвижения составит 120—160 мм/мин при давлении кислорода 0,7 МПа, расходе порошка 30 кг/ч и расходе копья (трубы) 4 мм на каждый метр длины отверстия.

При глубине отверстия 1,5 м и том же диаметре скорость углубления уменьшится до 40-70 мм/мин при давлении кислорода 1,0-1,2 МПа, расходе флюса 30 кг/ч и расходе копья 6 мм на 1 м длины отверстия.

Поверхностная резка — разновидность кислородной резки. Она предназначена для вырезания на поверхности металла рельефа в виде одной или нескольких, раздельных или совмещенных канавок. В сварочных работах эта резка часто используется для вырезки дефектных участков швов. При данной Резке источником нагрева металла будет являться и пламя резака, и расплавленный шлак, который при своем растекании подогревает глубоколежащие слои металла.

Для этого вида работ хорошо подходят резаки типа РПА и РПК. Режим резки и угол наклона инструмента играют важную роль в эффективности поверхностной резки.

На начальном этапе нужно прогреть область разреза д температуры воспламенения. Резак следует располагать пр этом под углом 70-80° к поверхности металла. Перед подаче режущего кислорода инструменту необходимо придать на клонное положение под углом 15-45”. В процессе резки возни кает очаговое горение металла; тем самым обеспечиваете эффективная зачистка металлической поверхности, в том чи . ле и за счет равномерного продвижения инструмента по ли нии намечаемого разреза.

Область применения и методы газовой резки по бетону

Рисунок 1 — Газовая резка

Конструкции и изделия из бетона/железобетона, так же, как и металлические аналоги, подвергаются дополнительной обработке: выполняется подгонка под определенные размеры, делаются проемы под окна и двери, отверстия в стенах под трубы и коммуникации. Для этих целей применяется кислородно-флюсовая газовая резка.

Хорошие показатели при выполнении такой работы дает флюс с высокой тепловой эффективностью, в состав которого входят железный и алюминиевый порошки в сочетании 75-85% и 15-25% соответственно.

Принцип работы

В процессе резки газовым резаком происходит следующее: разогретый металл сжигается в струе кислорода, который нагнетается под давлением. Предварительно, сплав разогревают до необходимой температуры, при помощи специальной горящей смеси ацетилена с кислородом. Такой способ резки, кислородно-ацетиленовым резаком, применяется практически ко всем маркам металла (кроме нержавейки, цветных металлов и сплавов). Для газовой резки железобетонных изделий используют другой метод.

Кислородно-флюсовая резка

Метод заключается в следующем: в зону реза струей сжатого воздуха (например кислорода или азота) вдувается флюс (вещество, содействующее образованию шлака и улучшению качества металла при плавке) на основе порошка из железа, который выделяет при сгорании дополнительное количество теплоты, снижает концентрацию входящих в материал примесей и разжижает шлак.

При кислородно-флюсовой резке воспламенение флюса начинается над поверхностью разрезаемого материала, а полное сгорание происходит в полости реза. На практике это расстояние выбирается в зависимости от разрезаемого материала и колеблется в пределах от 15 до 50 мм.

С помощью специальной техники разрезаются железобетонные конструкции толщиной от 90 до 300 мм. При этом скорость прохода составляет 100 мм в минуту. Для образования хорошего струйного потока применяются сопла имеющие форму цилиндра и конуса суженную к выходу. Для резки толстых железобетонных конструкций используют метод кислородно-копьевой резки.

Кислородно-копьевая резка

Более продуктивным способом газовой резки по бетону является порошковое копье, с помощью которого работы можно проводить на конструкциях толщиной от 100 до 2000 мм. Порошковое копье имеет свойства обычного кислородного копья, которое предназначено для глубокого проникновения в материал, и свойства кислородно-флюсовой резки.

Рисунок 2 — Схема кислородно-копьевой резки

Принцип заключается в следующем: с помощью специальной автоматизированной трубки в место реза подается смесь железного и алюминиевого порошка, сгорание которого выделяет дополнительное тепло. Что бы кислородное копье длиной 3000 — 6000 мм подавало кислород к месту прожигания отверстия, используют специальную установку УФР-5.

В устройстве применяется толстостенная металлическая труба из стали наибольшим диаметром 20 — 35 мм заполненная на 60—65 % стальными прутками или тон­костенную газовая труба того же диаметра, обмотанная снаружи стальной проволокой диаметром 3—4 мм, через которую подается кислород, участвующий не только в горении, но и в выдувании продуктов, образовавшихся в результате сгорания.

Зная толщину конструкции можно просчитать количество затраченных на резку ресурсов исходя из данных таблицы 1.

Читать еще:  Лазерно гравировальные станки для лазерной резки

Таблица 1 — Режимы кислородно-флюсового прожигания отверстий в железобетоне

Глубина, ммДиаметр прожигаемого отверстия, ммРасход флюса, кг/чДавление кислорода, кг*с/ см. квРасход кислорода, м. куб /чРасход стальной трубки, м/м длинны отверстияДиаметр копья, дюймыСкорость прожигания, мм/мин
До 50050 — 55306 — 760 — 8043/8120 — 180
500 — 100055 — 60308 — 1080 — 1004 — 53/880 — 120
1000 — 150060 — 703010 — 12100 — 1205 — 63/840 — 80

Резак УФР-5

УФР-5 используется как в ручной, так и в машинной кислородно-флюсовой резке. Так же его используют в кислородно-копьевой (порошковой) резке для точечного прожигания отверстий в материалах.

Рисунок 3 — Схема работы установки УФР-5

Пояснение к рисунку 3:

  1. Копьедержатель.
  2. Флюсопитатель.
  3. Ручной резак.
  4. Машинный резак.

Топливом служит пропан или бутан в сочетании с кислородом. Инжектор подает флюс из бачка струей режущего кислорода. В режущей зоне он создает тройное воздействие:

  • термическое;
  • химическое (в резе образуются жидкотекучие шлаки — их удаление осуществляется струей кислорода);
  • абразивное (не сгоревшие частицы порошка и тугоплавкие окислы с поверхности кромок стираются, а после удаляются полностью).

Рисунок 4- Установка кислородно-флюсовой резки УФР-5

Пояснение к рисунку 4:

  1. Тележка.
  2. Циклон.
  3. Флюсопитатель.
  4. Редуктор кислорода.
  5. Резак.
  6. Шланги.

В таблице 2 указаны скорость обработки бетона и расход материала при различных методах резки.

Таблица 2 — Скорость обработки бетона и расход материала в зависимости от способа резки

Способ резкиСкорость обработки бетона см. куб/минРасход материала на 1 куб. дм удаляемого бетона
труб, кгкислорода, м. кубфлюса, кг
Кислородно-флюсовая1005,54,5
Кислородно-копьевая3000,52,52,5

Дополнительное оборудование для работы

Рисунок 5 — Работа с газовым резаком

При работе с газовым резаком, потребуется следующее комплектующее:

  1. Огнетушитель.
  2. Защитное обмундирование (толстые кожаные перчатки, рабочая крепкая обувь с толстой кожаной подошвой, специальные очки или маска).
  3. Соответственная одежда (комбинезон стойкий к брызгам расплавленного металла, за неимением, можно использовать хорошо облегающую хлопчатобумажную одежду. Запрещено одевать вещи из синтетических и легковоспламеняющихся тканей, рваных и сильно изношенных по краям).
  4. Инструменты для замеров (линейка, угольник и карандаш-мелок из мыльного камня).
  5. Специализированная зажигалка для газового резака (запрещено использовать спички и зажигалки из-за соображений безопасности).

По спецодежде есть ГОСТ Р ИСО 11611 — 2011, просмотреть его можно по ссылке.

Стоимость услуг железобетонной резки

Цена на разрезание бетонных и железобетонных конструкций зависит от расходуемого количества кислорода и флюса, на которое непосредственно влияет толщина изделия.

Стоимость аппаратуры дорогая, поэтому, если работа единичная, лучше договорится с резчиками о выполнении работ и цене индивидуально. В среднем цена составляет 100 рублей за 1 метр.

Видео

На видео показан процесс кислородно-копьевой резки. С помощью специальной установки, резчик прожигает точечное отверстие в толстом слое железобетонной конструкции.

Вывод

Газовая резка по бетону делится на:

  • кислородно-флюсовую с резом конструкции толщиной до 300 мм и скоростью прохода до 180 мм в минуту;
  • кислородно-копьевую (порошковую) с резом конструкции толщиной до 2000 мм и скоростью прохода не более 40 мм в минуту.

На территории СНГ широко используется резак УФР-5. Не забывайте использовать спецодежду описанную в ГОСТ Р ИСО 11611 — 2011.

Большая Энциклопедия Нефти и Газа

Кислородно-копьевая резка

Кислородно-копьевая резка применяется для прожигания отверстий в бетоне или железобетоне. При этом способе кислород продувается через стальную трубу ( копье), конец которой разогрет до температуры оплавления и прижат к поверхности разрезаемого материала. В результате интенсивного окисления конца трубы в струе кислорода образуются жидко-текучие оксиды железа, которые реагируют с бетоном или железобетоном и превращаются в жидкотекучие шлаки, легко выдуваемые из полости реза. Постепенным прижатием копья к материалу оно преодолевает сопротивления застывающих шлаков и проникает вглубь полости реза, образуя сквозное отверстие. [1]

Кислородно-копьевую резку применяют для прожигания отверстий не только в бетоне и железобетоне, но и в стали. Она используется также для резки скрапа, удаления прибылей стального литья и прожигания отверстий при разделительной резке плит большой толщины на заводах тяжелого машиностроения и металлургической промышленности. [3]

Кислородно-копьевую резку применяют для прожигания от-герстий не только в бетоне и железобетоне, но и в стали. Она используется также для резки скрапа, удаления прибылей стального литья и прожигания отверстий при разделительной резке плит большой толщины на заводах тяжелого машиностроения и металлургической промышленности. [5]

На некоторых металлургических заводах применяют кислородно-копьевую резку металла больших толщин . На рис. 34 представлена схема кислородно-копьевой резки. Резку выполняют одновременно два резчика, из которых первый универсальным резаком прорезает металл на ту глубину, которую позволяет пробить резак. При резке оператор совершает возвратно-поступательное перемещение резака для того, чтобы второй оператор смог ввести копье в разрез. Второй оператор вводит в разрез металлическое копье ( представляющее собой стальную или красно-медную трубку с наружным диаметром 6 — 10 мм и внутренним 3 — 6 мм) в зону расплавленного шлака и металла и перемещает его вдоль реза до нижней кромки металла. [7]

На некоторых металлургических заводах применяют кислородно-копьевую резку металла больших толщин. На рис. 34 представлена схема кислородно-копьевой резки . Резку выполняют одновременно два резчика, из которых первый универсальным резаком прорезает металл на ту глубину, которую позволяет пробить резак. При резке оператор совершает возвратно-поступательное перемещение резака для того, чтобы второй оператор смог ввести копье в разрез. Второй оператор вводит в разрез металлическое копье ( представляющее собой стальную или красно-медную трубку с наружным диаметром 6 — 10 мм и внутренним 3 — 6 мм) в зону расплавленного шлака и металла и перемещает его вдоль реза до нижней кромки металла. [8]

Баумана применяется для порошково-кислородной резки железобетона. Установка состоит из флюсоносителя, смонтированного на тележке, копье-держателя, ручного или машинного резаков, кислородной рампы на 5 — 10 баллонов, воздушной рампы на 3 баллона. Копьедержа-тель служит для крепления стальной трубы, по которой подается кислород при кислородно-копьевой резке . Резаки ( ручной и машинный) работают на пропан-бутане в смеси с кислородом и имеют устройство для внешней подачи флюса в струю режущего кислорода. [9]

Баумана применяется для порошково-кислородной резки железобетона. Установка состоит из флюсоносителя, смонтированного на тележке, копье-держателя, ручного или — машинного резаков, кислородной рампы на 5 — 10 баллонов, воздушной рампы на 3 баллона. Копьедержа-тель служит для крепления стальйой трубы, по которой подается кислород при кислородно-копьевой резке . Резаки ( ручной и машинный) работают на пропан-бутане в смеси с кислородом и имеют устройство для внешней подачи флюса в струю режущего кислорода. [10]

Кислородно-флюсовая копьевая резка

Раскрой чугуна, сталей с большим содержанием легирующих элементов, цветных металлов и сплавов выполняют преимущественно плазменно-дуговым способом. Но как быть, если они имеют слишком большую толщину и порезка данным методом невозможна? В таких случаях применяется резка кислородно-флюсовым копьем.

Отличительные особенности процесса

Популярность резки кислородно-флюсовым копьем толстостенных материалов обусловлена присутствием в процессе порошкообразных флюсов. При подаче совместно с кислородом они позволяют переплавить тугоплавкие окислы в жидкотекучие шлаки, которые впоследствии легко удаляются с места реза под воздействием высокого давления кислорода.

Частицы порошка сразу не сгорают, а попадают в глубину реза. Под воздействием ударного трения, которое они создают, с поверхности кромок удаляются тугоплавкие оксиды.

Конец копья перед резкой подвергается предварительному подогреву любым возможным способом (газовым пламенем, газокислородной горелкой) до температуры воспламенения в кислороде, подачу которого включают и регулируют на рукоятке.

От традиционного кислородного способа кислородно-флюсовый отличается следующими параметрами:

  • Увеличенная мощность пламени для подогрева (в пределах 15-20 %) с целью равномерного нагрева частиц флюса до их воспламенения. В противном случае железный порошок будет воспламеняться на большом расстоянии от мундштука и не полностью сгорать, что ведет к неустойчивому процессу резки кислородным копьем.
  • Большее расстояние от торца мундштука к поверхности разрезаемого материала для предупреждения его закупорки – около 15-60 мм в зависимости от толщины материала и используемого оборудования. Это снижает вероятность хлопков, которые являются результатом отскакивания флюса от поверхности металла, а также закупорки выходных отверстий резака.
  • Скорость процесса в обязательном порядке подбирается с учетом расхода флюса.
  • Большее сечение каналов для подачи режущего кислорода.

Оборудование для кислородно-флюсовой резки

Аппараты состоят из нескольких основных узлов:

  • резак;
  • кислородное копье;
  • флюсопитатель;
  • приспособление для подвода флюса.
Читать еще:  Инструмент для резки металлочерепицы насадка на дрель

Флюс может подаваться в резак по следующим схемам:

  1. Механическая – подача осуществляется при помощи шнека с электромеханическим приводом, установленного внизу емкости. Флюс захватывается ним и по шлангу проходит к резаку, где подхватывается струей режущего кислорода и доставляется на место резки. Как правило, применяется при использовании легковоспламеняемой смеси на основе алюминиево-магниевого порошка, подача которой непосредственно кислородом недопустима.
  2. Однопроводная – флюс подается из бачка под воздействием давления кислорода, что исключает необходимость наличия дополнительного инжектора в головке резака.
  3. Внешняя – кислород подводится к нижней и верхней части емкости с флюсом. Вверху емкости создается давление, внизу – кислород подается в шланг.

Резка высоколегированных марок сталей

Стали с большим содержанием хрома (от 5 % и более) перед резкой рекомендуется предварительно подвергать отпуску при температуре 300 °C, особенно при необходимости получения деталей сложной конфигурации. Это позволит предотвратить трещинообразование. А хромоникелевые стали, полученные методом холодной прокатки – смягчающей термообработке.

Для резки кислородно-флюсовым копьем запрещено применять флюсы повышенной влажности и те, которые на протяжении длительного периода времени находились во флюсопитателе.

Качественная поверхность реза получается, когда кислородное копье при разделительной резке удерживается перпендикулярно разрезаемому материалу либо углом вперед. Но данный метод возможен только при условии прямолинейного раскроя.

  • смесь двууглеродистого натрия (98-99 %) с фосфористым кальцием (1-2 %);
  • железный порошок;
  • доломитизированный известняк;
  • кварцевый песок.

Для кислородно-флюсовой резки чугуна используются все вышеперечисленные порошки кроме состава на основе двууглеродистого натрия и фосфористого кальция.

Раскрой цветных металлов

Благодаря сжиганию флюса при резке кислородно-флюсовым копьем вводится огромное количество дополнительного тепла, чем возмещается низкий тепловой эффект горения меди и ее сплавов и повышенный отвод тепла в обрабатываемый материал, что обусловлено высокой теплопроводностью. Но и эти металлы требуют предварительного подогрева места реза до температуры от 200 до 400 °C.

Расположение мундштука по отношению к поверхности разрезаемого материала выбирается в зависимости от его толщины и составляет 30-50 мм, что больше даже сравнительно с резкой высоколегированных сталей.

Также по сравнению с раскроем сталей с высоким содержанием хрома и других легирующих элементов процесс протекает в 2-4 раза медленнее и сопровождается повышенным расходом флюса:

  • при резке меди – в 8-12 раз;
  • при резке латуни – в 4-8 раз.

Поверхность реза не отличается высоким качеством, поэтому изделия впоследствии подвергаются механической обработке.

Алюминий режется этим способом довольно грубо.

  • смесь железного (35-90 %) порошка с алюминиевым (10-65 %);
  • состав на основе железного (50-55 %), алюминиевого (20-40 %) порошка и азотнокислого натрия (5-30 %).

Порезка бетона и железобетона

Помимо различных металлов резка кислородно-флюсовым копьем может применяться для бетона и различных ЖБИ толщиной до 1500 мм. От раскроя сталей процесс отличается тем, что необходимо использовать флюсы со значительно большей теплоэффективностью, поскольку бетон в кислороде не горит. Отлично подходит для этих целей смесь на основе 75-90 % железного и 10-25 % алюминиевого порошка. Для подачи флюса применяется внешняя схема.

В начале резки копье прижимается к поверхности материала, а в процессе работы его следует периодически вращать и перемещать возвратно-поступательными движениями. Также его допускается установить на специальной стойке, чтобы облегчить нагрузку, или держать в руках, если объем работы небольшой.

Области применения кислородно-флюсовой резки

Кислородно-флюсовая резка нашла широкое применение на металлургических предприятиях, заводах тяжелого машиностроения. Ее использование экономически оправдано при выполнении следующих работ:

  • обрезка прибылей на стальных отливках;
  • вырезания отверстий (леток) в сталеплавильных печах металлургического производства, которые служат для выпуска шлака, штейна или расплавленного металла;
  • резка металлолома, неликвидов на копровых участках различных предприятий;
  • поверхностная резка и разделка различных дефектов (шлаковые и песчаные включения, наплывы и т.п.) на поверхности отливок из высоколегированных сталей;
  • ликвидация остатков шлака и стали (так называемых «козлов») в шлаковых камерах доменных, электрических и мартеновских печей;
  • резка блюмов в холодном состоянии;
  • прожигание отверстий в бетоне и железобетоне и их разделение.

Поскольку качество реза при кислородно-флюсовой резке относительно невысокое, данный метод применяется в основном в случаях, когда использование других способов раскроя экономически нецелесообразно либо просто невозможно.

Кислородная резка металла

Кислородная резка металла возможна только при соблюдении определенных условий.

Первое – температура воспламенения металла в атмосфере горящего кислорода должна быть ниже его температуры плавления. Идеальными для данного вида резки являются стали с низким содержанием углерода. Чем выше содержание углерода, тем выше температура воспламенения и ниже температура плавления. У низкоуглеродных сталей температура плавления составляет около 1500 °С, а температура воспламенения — 1300°С.

Второе непременное условие – температура плавления окислов, образующихся при резке металла должна быть ниже температуры плавления самого металла. Иначе нарушается процесс резки вследствие того, что тугоплавкие окислы не выдуваются режущей струей кислорода. Поскольку стали с высоким содержанием хрома, а также алюминий не удовлетворяют этому условию, резка металлов в данном случае невозможна без использования специальных флюсов.

Для обеспечения непрерывности процесса резки металла количество тепла, выделяющееся при сгорании самого металла в кислороде, должно быть достаточно большим. Ведь только треть тепла поступает от пламени резака.

Кроме того, шлаки должны легко выдуваться из места, где производится такая металлообработка, как разрезание металла с применением горящей кислородной струи. И теплопроводность разрезаемых металлов не может быть высокой, в противном случае тепло будет расходоваться на близлежащую поверхность, а сам процесс резки станет в результате неустойчивым.

В самом начале резки металла кислородом нагрев места реза осуществляется только за счет пламени резака. Одновременно пламя подогревает кромку металла, находящуюся впереди от места реза, до температуры воспламенения. За счет этого процесс резки становится непрерывным.

Безусловно, чем меньше толщина металла, тем большее количество тепла составляет тепло подогревающего пламени. Если разрезать сталь толщиной до 5 мм, то 80% общего тепла приходится на пламя, и только 20% — на тепло, выделяющееся в процессе окисления металла.

Инжекторный газокислородный резак представляет собой устройство, состоящее из ствола и наконечника. Ствол в свою очередь состоит из: — рукояти с ниппелями, которые служат для подключения кислородного и газового рукавов; — корпуса с вентилями, регулирующими подачу кислорода и газа (ацетилена, газов-заменителей); -инжектора; — смесительной емкости (камеры); — головки резака с мундштуками (наружным и внутренним); — кислородной трубки с вентилем.

Посредством редуктора и рукавов с ниппелями из баллона кислород подается в резак, где направляется в два канала. Часть кислорода поступает в инжектор (подача регулируется вентилем). Другая же часть идет в трубку режущего кислорода, образуя режущую струю. Кислород, поступивший в инжектор, создает разреженную атмосферу, подсасывая смесь из кислорода и газа. Смесь образуется в смесительной камере и, проходя через пространство между внутренним и наружным мундштуком, воспламеняется, создавая подогревающее пламя.

Резаки для ручной металлообработки можно подразделить условно по следующим признакам: — по виду горючего газа (для жидкого горючего, для газов-заменителей, для ацетилена); — по назначению – универсальные резаки и специальные; — по принципу смешивания кислорода и горючего газа (инжекторные и безынжекторные); — по виду производимой резки металла (копьевая резка, разделительная, поверхностная, кислородно-флюсовая).

Наибольшей популярностью пользуются универсальные резаки. Они должны резать сталь толщиной от 3мм до 30см в любом направлении, должны быть устойчивы против обратных ударов, должны быть удобны в применении и иметь небольшой вес.

Резка кислородным копьём

При частичном разрушении конструкций кроме механизированного инструмента (отбойных молотков, отрезных дисков) применяют установки термического воздействия — кислородное копье, порошково-кислородный резак и так далее.

Для прожигания отверстий в бетоне и железобетоне, а также для разделительной резки в промышленной практике используют кислородное или кислородно-порошковое копье.

Например, с помощью копьевой резки прожигались отверстия в бетонной плите, на которой был установлен реактор Чернобыльской атомной станции. Отверстия были необходимы для размещения датчиков, контролирующих температуру, радиационный фон и другие параметры в разрушенном реакторе.

Кислородное копье — стальная трубка необходимой длины, по которой пропускается кислород. Будучи предварительно нагретым до температуры 1350–1400 °С, рабочий конец копья после пуска кислорода начинает интенсивно окисляться (гореть), развивая температуру до 2000 °С. Для увеличения тепловой мощности копья внутрь трубки обычно закладывают стальные прутки, но иногда их прихватывают сваркой к наружной поверхности копья (рис. 1).

Читать еще:  Полотно для резки кирпича

Рис. 1. Прутковые копья

Для начального нагрева копья используют обычно посторонние источники нагрева, например сварочную дугу или подогревающее пламя резака. В начальный момент, при зажигании копья, давление кислорода устанавливают небольшим, не более 0,05 МПа (0,5 кгс/см 2 ), после же воспламенения трубки и установления устойчивого процесса давление кислорода поднимают до рабочего.

В процессе горения копье непрерывно укорачивается, причем в зависимости от толщины прожигаемого материала длина сгоревшей части трубки копья может быть в 5–25 раз больше длины прожигаемого отверстия. Обычно процесс прожигания кислородным копьем отверстий производят без применения подогревающего пламени.

Особенность прожигания отверстий в бетоне и железобетоне состоит в том, что для поддержания материала в месте контакта с копьем в расплавленном состоянии копье необходимо прижимать к обрабатываемому бетону с силой до 300–500 Н (30–50 кгс), преодолевая сопротивление густоплавких шлаков.

Последнее вызвано тем, что бетон, состоящий из оксидов (Al2O3, CaO и SiО2), кислородной струей не окисляется и теплоты не выделяет, в связи с чем быстро застывает при удалении от его поверхности горящего конца копья. Поэтому прожигать отверстия в бетоне и других неметаллических материалах следует без возвратно–поступательных движений копья, а лишь периодически поворачивая копье на угол 10–15° в обе стороны.

Порошково-кислородное (кислородно-флюсовое) копье представляет собой стальную трубку с проходящими по ней кислородом и флюсом — мелкодисперсной смесью металлических порошков (железного и алюминиевого).

Так же, как и при кислородном копье, рабочий конец порошково-кислородного копья в начале процесса нагревают источником теплоты до температуры 1350–1400 °С, после чего в копье подают кислород и флюс.

На выходе из копья порошок воспламеняется, образуя ярко светящийся факел длиной до 50 мм с температурой 4000 °С и выше. Направляя факел копья на поверхность обрабатываемого материала, ее расплавляют и кислородной струей удаляют образующиеся шлаки. При резке металлов наряду с расплавлением имеет место и окисление основного металла.

В отличие от кислородного порошково-кислородное копье во избежание закупорки его шлаком не прижимают к прожигаемому материалу, а выдерживают на расстоянии 30–50 мм от торца образуемого отверстия. Достигается это периодической с интервалом в несколько секунд подачей копья вперед до упора в торец отверстия.

Промежутки времени между очередными подачами копья вперед зависят от скорости сгорания трубки копья. В процессе прожигания отверстий копью иногда придают вращательные движения, поворачивая его рукой на угол 10–15° в обе стороны.

Отверстия в бетоне и железобетоне порошково-кислородным копьем прожигают обычно в горизонтальном или наклонном снизу вверх направлении. Диаметр образуемого порошковым копьем отверстия зависит от диаметра копья, наличия или отсутствия вращательных движений копья и от удельных расходов кислорода и флюса. В результате получаются отверстия приблизительно круглой формы и составляет 30–90 мм.

Разделительную резку начинают от края разрезаемого материала или от начального сквозного отверстия внутри контура. Сущность процесса состоит в том, что, направляя факел копья на поверхность разрезаемого материала и совершая копьем возвратно–поступательных движения по касательной к передней грани реза (рис. 2), расплавляют поверхность материала факелом и удаляют расплавленный материал и шлаки струей кислорода.

Углубляя постепенно копье в разрез, прорезают материал насквозь, т. е. осуществляют разделительную резку. Ширина образуемого щелевого разреза в зависимости от толщины материала и диаметра копья может составлять 25–70 мм.

Рис. 2. Разделительная порошково–копьевая резка в нижнем положении

Резка порошковым копьем возможна во всех пространственных положениях независимо от толщины материала (для бетона и железобетона в пределах 3–3,5 м).

В зависимости от толщины разрезаемого железобетона резку можно выполнять по одной из схем, представленных на рис. 3–5. Так, при толщине железобетона до 300 мм, когда ванна расплавленного бетона и шлака на поверхности передней грани реза может поддерживаться на всей длине этой грани в жидком состоянии, резку целесообразно проводить по схемам рис. 3.

В этом случае копье совершает возвратно–поступательные движения на всю толщину разрезаемого материала, смывая расплавленный бетон в шлаки. Резка железобетона большей толщины этим способом не может быть производительной, так как жидкая ванна шлака на передней грани (длина которой может составлять не более 300 мм) по мере продвижения копья в глубь железобетона застывает.

Последнее вызывает необходимость повторного разогрева передней грани реза до расплавления, что сильно снижает производительность процесса.

Рис. 3. Резка бетона и железобетона толщиной до 300 мм:
а — при направлении копья сверху вниз; б — при горизонтальном направлении

Для лучшего удаления шлака из образуемого разреза и достижения большей производительности резку железобетона толщиной более 300 мм следует проводить по схемам рис. 4.

В этом случае резку начинают от нижней (рис. 4, а) или боковой, задней (рис. 4, б) поверхности разрезаемого железобетона, причем для поддержания шлаковой ванны на всей длине в жидком состоянии максимальная длина передней грани реза не должна превышать 300 мм. Сказанное в полной мере относится к резке в вертикальной плоскости и вертикальном направлении (рис. 5).

Рис. 4. Резка бетона и железобетона толщиной более 200 мм:

а — в горизонтальной плоскости и вертикальном направлении;

б — в вертикальной плоскости и горизонтальном направлении

Рис. 5. Резка бетона и железобетона в вертикальной плоскости и вертикальном направлении:

а — при толщине разрезаемого материала до 300 мм;

б — при толщине разрезаемого материала более 200 мм

Резку железобетона толщиной более 200 мм по схемам рис. 4, 5 осуществляют участками (рис. 6). Резку в пределах одного участка выполняют послойно (рис. 7).

Рис. 6. Схема резки «участками» бетона и железобетона толщиной более 200 мм

Рис. 7. Схема послойной резки бетона и железобетона толщиной до 200–300 мм и послойной резки отдельных участков при толщине материала более 200 мм

При разделительной резке железобетона важно начало процесса. В простейшем случае резку железобетона начинают от внешней кромки. Однако в практике весьма часты случаи, когда процесс приходится начинать внутри контура железобетонной стены или перекрытия.

Для этого необходимо иметь начальное отверстие диаметром 70–100 мм, которое можно получить как кислородным, так и порошково–кислородным копьем. При порошково–копьевой резке применяют стальные водо–газопроводные трубки с внутренними диаметрами 10 и 15 мм (ГОСТ 3262).

Один из основных параметров режима резки — удельный расход кислорода — зависит от удельного расхода и состава флюса, сечения копья, насыщенности бетона арматурой, а также от толщины разрезаемого железобетона.

При порошково–копьевой разделительной резке железобетона с применением флюса, состоящего из 80–85% Fe и 15–20% Al (по объему), на окисление трубки копья и флюса ориентировочно расходуется до 40% кислорода. Остальное количество его идет на удаление образующихся шлаков и непроизводительные потери.

Коэффициент полезного действия процесса прожигания в большей мере зависит от толщины разрезаемого железобетона, с увеличением которой наблюдается более полное использование кислорода и флюса за счет увеличения времени протекания реакций окисления. Следовательно, удельный расход части кислорода, идущей на окисление трубки копья и флюса при разделительной порошково–копьевой резке, уменьшается с увеличением толщины железобетона.

Однако практически для лучшего удаления шлака при резке больших толщин железобетона давление кислорода увеличивают, в результате чего (при сохранении постоянства проходных сечений кислородопровода) удельный расход кислорода с увеличением толщины разрезаемого железобетона возрастает.

Давление кислорода определяет в основном степень трудности удаления шлака, зависящая, в свою очередь, от толщины железобетона и направления процесса резки.

Так, если при резке железобетона толщиной 1500 мм в вертикальном направлении сверху вниз рабочее давление кислорода составляет 0,6 МПа (6 кгс/см 2 ), то при резке железобетона той же толщины в горизонтальном направлении оно должно составлять не менее 1 МПа (10 кгс/см 2 ).

Однако во избежание чрезмерно большого охлаждающего действия струи и непроизводительных потерь кислорода давление его даже при резке в горизонтальном направлении бетона толщиной до 2000 мм не должно превышать 1,4 МПа (14 кгс/см 2 ).

Большое влияние на производительность резки оказывает также удельный расход флюса, изменение которого в пределах 24–48 кг/ч и более (при резке железобетона толщиной 150–1500 мм) изменяет скорость резки до 25–30%.

Материал статьи представлен только для ознакомления с данной технологией производства работ.
В данный момент ЧУП «ДОЛБО» не использует описываемый выше метод в своей работе.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector