3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Восстановление деталей сваркой наплавкой пайкой

Восстановление деталей наплавкой металла

Наплавкой называется процесс нанесения одного расплавленного металла (называемого присадочным) на поверхность другого (называемого основным). При этом основной металл также расплавляется на небольшую глубину для образования гомогенного соединения. Цель наплавки может быть различной: восстановление утраченной геометрии детали или придание ей новой формы, образование поверхностного слоя с заданными физико-механическими свойствами (такими как повышенная твердость, износостойкость, антифрикционность, коррозионная стойкость, жаростойкость и пр.), упрочнение наплавкой.

Наплавку можно производить на любые поверхности — плоские, конические, цилиндрические, сферические. В больших пределах может меняться и ее толщина — от нескольких долей миллиметра до сантиметра и более.

Основные принципы наплавки

  • Необходимо стремиться к минимальному проплавлению основного металла. Это достигается путем наклона электрода в сторону, обратную ходу наплавки.
  • Должно быть как можно меньшее перемешивание наплавленного металла с основным.
  • Нужно стараться достичь минимальных остаточных напряжений и деформаций в детали. Это требование во многом обеспечивается соблюдением двух предшествующих.
  • Необходимо снижать до приемлемых значений припуски на последующую обработку детали. Говоря другими словами, нужно наплавлять металла ровно столько, сколько необходимо, и не больше.

Применяются различные способы наплавки металла — электродуговая, газовая, электрошлаковая, индукционная, плазменная, импульсно-дуговая, вибродуговая, порошковая наплавки. Наибольшее распространение получила дуговая наплавка.

Материалы для наплавки существуют в различных формах. Это могут быть присадочные прутки, порошкообразные смеси, наплавочные покрытые электроды, порошковая и цельностержневая проволока. В электродуговой наплавке применяются в основном покрытые электроды, присадочные прутки и проволока.

Наплавка покрытыми электродами

Наплавка требует определенных навыков в работе. Надо при минимальном токе и напряжении, чтобы не увеличивать долю основного металла в наплавленном, оплавить оба компонента. Состав металла будет определять тип электрода, а толщину и форму — диаметр электрода. Напряжение дуги определяет форму наплавленного валика, при его повышении увеличивается ширина и уменьшается высота валика, возрастает длина дуги и окисляемость легирующих примесей, особенно углерода. В связи с этим стремятся к минимальному напряжению, которое должно согласовываться с током дуги.

Наплавка деталей из стали осуществляется, как правило, постоянным током обратной полярности (на электроде «плюс») в нижнем положении.

Детали из низкоуглеродистых и низколегированных сталей наплавляют обычно без предварительно нагрева. Но нередко требуется предварительный подогрев и последующая термообработка с целью снятия внутренних напряжений. Более детальные требования к наплавке сообщаются в документации на применяемые наплавочные электроды. Например, для электрода ОЗИ-3 приводятся следующие технологические особенности: «Наплавку производят в один-четыре слоя с предварительным подогревом до температуры 300-600°С. После наплавки рекомендуется медленное охлаждение. Возможна наплавка ванным способом на повышенных режимах. Прокалка перед наплавкой: 350°С, 1 ч.»

Поверхность детали перед наплавкой очищается от масла, ржавчины и других загрязнений.

Применяются различные схемы расположения наплавочных швов. В случае плоских поверхностей различают два основных вида наплавки — использование узких валиков с перекрытием друг друга на 0,3-0,4 их ширины, и широких, полученных увеличенными поперечными движениями электрода относительно направления прохода.

Другой способ — укладка узких валиков на некотором расстоянии один от другого. При этом шлак удаляют после наложения нескольких валиков. После этого валики наплавляются и в промежутках.

Во избежание коробления деталей, наплавление рекомендуется проводить отдельными участками, «вразброс», а укладку каждого последующего валика начинать с противоположной стороны по отношению к предыдущему.

Наплавка цилиндрической поверхности выполняется тремя способами — валиками вдоль образующей цилиндра, валиками по замкнутым окружностям и по винтовой линии. Последний вариант (по винтовой линии) является особенно удобным в случае механизированной наплавки, при которой детали в процессе наплавки придается равномерное вращение.

Для восстановления и повышения срока службы режущего, штампового и измерительного инструмента, а также деталей механизмов, работающих при интенсивном износе, применяется наплавка рабочих поверхностей твердыми сплавами, представляющими собой соединения таких металлов, как титан, вольфрам, тантал, марганец, хром и других с бором, углеродом, кобальтом, железом, никелем и пр.

При изготовлении новых инструментов и деталей с твердосплавной наплавкой, в качестве заготовок (оснований) применяются детали из углеродистых или легированных сталей. В случае ремонта деталей с большим износом, перед наплавкой твердыми сплавами делают предварительную наплавку электродами из малоуглеродистой стали.

Для получения более качественной наплавки, предупреждения образования трещин и снижения напряжений, во многих случаях целесообразен подогрев заготовок до температуры 300°C и выше.

Наплавка металлорежущего инструмента и штампов. Металлорежущие инструменты и штампы, работающие при холодной и горячей штамповке, наплавляют электродами ОЗИ-3, ОЗИ-5, ОЗИ-6, ЦС-1, ЦИ-1М и прочие марки. Металл, наплавленный этими электродами, обладает высокой сопротивляемостью к истиранию и смятию при больших удельных нагрузках и высоких температурах — до 650-850°C. Твердость наплавленного слоя без термообработки составляет от 52 HRC (ОЗИ-5) до 61 HRC (ОЗИ-3). Наплавляется 1-3 слоя общей толщиной 2-6 мм. Деталь перед наплавкой подогревают до температуры 300-700°С (в зависимости от марки электрода).

Наплавка деталей, работающих на истирание без ударных нагрузок. Если требуется получить наплавленный металл особо высокой твердости, можно использовать электроды для наплавки Т-590 и Т-620. Они специально предназначены для покрытия деталей, работающих на интенсивное истирание. Их стержень изготовлен из малоуглеродистой стали, зато в покрытия входят феррохром, ферротитан, ферробор, карбид бора и графит. Благодаря этим материалам твердость наплавленного металла может достигать 62-64 единиц по HRC.

Из-за того, что наплавленный металл обладает хрупкостью и склонностью к образованию трещин, изделия, наплавленные электродами Т-590 и Т-620, не предназначены для эксплуатации в условиях значительных ударных нагрузок. Наплавка твердосплавного металла производится в один-два слоя. Если требуется наплавлять большую толщину, нижние слои наплавляются электродами из малоуглеродистой стали и лишь заключительные — твердосплавными.

Наплавка деталей, работающих на истирание с ударными нагрузками. Детали из марганцовистых сталей (110Г13Л и подобные ей), работающие в условиях интенсивного поверхностного износа и высоких ударных нагрузок (в частности, рабочие органы строительного и землеройного оборудования), наплавляют электродами ОМГ-Н, ЦНИИН-4, ОЗН-7М, ОЗН-400М, ОЗН-300М и прочие марки. При их использовании твердость наплавляемого металла во втором слое получается 45-65 HRC при высоких значениях вязкости.

Наплавка нержавеющих сталей. Для наплавки деталей из нержавеющих сталей применяются электроды ЦН-6Л, ЦН-12М-67 и прочие марки. Стержень этих электродов изготовлен из нержавеющей высоколегированной проволоки. Кроме высокой коррозионной стойкости, наплавленный металл имеет еще и устойчивость к задиранию, что позволяет использовать эти электроды для наплавки уплотнительных поверхностей в арматурных изделиях.

При использовании некоторых электродов для наплавки нержавеющих сталей, рекомендуется производить предварительный и сопутствующий подогрев детали до температуры 300-600°С и осуществлять после наплавки термообработку.

Наплавка меди и ее сплавов. Наплавка меди и ее сплавов (бронз) может осуществляться не только на медное или бронзовое основание, но также на сталь и чугун. В этом случае создаются биметаллические изделия, имеющие необходимые эксплуатационные качества (высокую стойкость против коррозии, низкий коэффициент трения и прочие ценные свойства, присущие меди и ее сплавам) и обладающие при этом гораздо более низкой стоимостью в сравнении с деталями, изготовленными полностью из меди или ее сплавов.

Алюминиевые бронзы, в частности, обладающие высокими антифрикционными свойствами, очень хорошо работают в узлах трения, поэтому их наплавляют на червячные колеса, сухари и другие детали, работающие в условиях трения.

Наплавка деталей из технически чистой меди может производиться электродами «Комсомолец-100» или присадочными прутками из меди или ее сплавов. При наплавке меди на медь применяют предварительный подогрев до температуры 300-500°С.

Наплавленный слой желательно подвергать проковке, при температуре меди выше 500°С.

Если требуется наплавка бронзой, можно использовать электроды ОЗБ-2М, содержащие помимо, составляющей основу, меди также олово, марганец, никель и железо. Изделия, наплавленные электродами ОЗБ-2М, имеют высокую поверхностную износостойкость.

Наплавка меди и ее сплавов производится постоянным током обратной полярности в нижнем положении.

Наплавка в среде защитных газов

При восстановлении наплавкой деталей из углеродистых сталей можно использовать более дешевый углекислый газ. Учитывая тот факт, что CO2 окисляет расплавленный металл, наплавочная проволока в этом случае должна иметь раскислители (марганец, кремний и пр.).

Наплавку меди и ее сплавов можно производить в азоте, который нейтрален по отношению к меди.

Высоколегированные стали, сплавы на магниевой и алюминиевой основе наплавляются в аргоне, гелии или их смеси.

Наплавку неплавящимся вольфрамовым электродом осуществляют в аргоне и гелии. Вообще, инертные газы, особенно, аргон, являются универсальными, подходящими для сварки и наплавки практически любого металла.

В качестве материалов для наплавки полуавтоматами углеродистых и низколегированных сталей применяются сварочные проволоки сплошного сечения (Св-08ГС, Св-08Г2С, Св-12ГС), и специальные наплавочные (Нп-40, Нп-50, Нп-30ХГСА). Для наплавки нержавейки применяют проволоку из нержавеющей стали. Может осуществляться наплавка и порошковой проволокой, позволяющей получить наплавленный слой с особыми свойствами.

Читать еще:  Самодельный термофен для пайки

При восстановлении деталей наплавкой методом MIG/MAG применяют как и в случае MMA постоянный ток обратной полярности, обеспечивающий меньшее проплавление основного металла. При использовании вольфрамового электрода (метод TIG) используют прямую полярность, исключающую оплавление вольфрамового электрода. Наплавку нужно стараться вести как можно более короткой дугой — во избежание разбрызгивания металла.

Capilla

Capilla 635 S

Электрод с основным покрытием для наплавки частей, подверженных экстремальному абразивному износу и небольшим ударным нагрузкам.

Capilla U 30

Специальный электрод с рутилово-основным водоотталкивающим и непроводящим ток покрытием для сварки под водой.

Capilla 308 L

Электрод Capilla 308 L с рутиловоосновным покрытием для сварки коррозионностойких аустенитных Cr-Ni сталей с особо низким содержанием углерода.

Capilla 30-170

Электрод с рутиловым покрытием для сварки и ремонтных сварочных работ металлоконструкций из малоуглеродистых сталей.

Capilla 49 KBS

Электрод с основным покрытием для сварки малоуглеродистых и низколегированных сталей, работающих при температуре от -40° до 450°C.

Capilla 30 S

Электрод с рутилово-целлюлозным покрытием для сварки и ремонтных сварочных работ металлоконструкций из малоуглеродистых сталей.

Capilla 30 W

Электрод с рутилово-основным покрытием для сварки труб и трубных металлоконструкций из малоуглеродистых сталей.

Capilla 49

Электрод с рутиловым покрытием для сварки металлоконструкций из малоуглеродистых сталей.

Capilla 51 Ti

Электрод Capilla 51 Ti с рутиловым покрытием для сварки разнородных сталей и для наплавки.

Capilla 309 Mo

Электрод с рутиловоосновным покрытием для сварки хромоникелевомолибденовой стали с аналогичными сталями.

Capilla 318

Электрод с рутилово-основным покрытием для сварки коррозионностойких аустенитных Cr-Ni-Mo стабилизированных Nb и (или) Ti сталей с особо низким содержанием углерода. Применяется для сварных соединений, работающих при температуре до 400°C.

Capilla 4460 Cu

Электрод с рутиловоосновным покрытием для сварки супердуплексных сталей.

Capilla 52 K

Электрод с рутиловоосновным покрытием для сварки разнородных сталей и для наплавки. Также применяется для наплавки буферных слоев.

Capilla 310

Электрод с рутиловоосновным покрытием для сварки жаропрочной стали аустенитного класса.

Capilla 347

Электрод с рутиловоосновным покрытием для сварки коррозионностойких аустенитных стабилизированных Nb и (или) Ti сталей.

Capilla 4515

Электрод с рутиловым покрытием для сварки дуплексной стали.

Capilla 316 L

Электрод с рутиловоосновным покрытием для сварки коррозионностойких аустенитных Cr-Ni-Mo сталей с особо низким содержанием углерода.

Capilla 385

Электрод с рутиловоосновным покрытием для сварки и наплавки аналогичных типов сталей.

Capilla 309 L

Электрод с рутиловоосновным покрытием для сварки легированных теплоустойчивых Cr-Ni сталей, работающих при температуре до 300°C.

Capilla 317-17

Электрод с рутиловым покрытием для сварки коррозионностойких аустенитных Cr-Ni-Mo сталей с особо низким содержанием углерода. Применяется для сварных соединений, работающих при температуре до 400°C.

Capilla 2209

Электрод с рутиловоосновным покрытием для сварки коррозионностойких Cr-Ni-Mo дуплексных сталей.

Capilla P 91

CrMoVNi – покрытый электрод с хорошими сварочными характеристиками.

Capilla 50/50 Nb

Рекомендуется предварительный подогрев свариваемых деталей – температура 600°C.

Capilla 625 K

Электрод для наплавки металла с высокой коррозионной стойкостью.

  • 1
  • 2
  • 3

В 1959 году компания Capilla Schweissmaterialien GmbH начала свою деятельность в качестве фирмы, занимающейся реализацией материалов для сварки и пайки. Достаточно глубоко погрузившись в потребности и спрос постоянных клиентов, руководство компании Capilla приняло решение о старте проекта по производству покрытых электродов, применяемых для ручной электродуговой сварки.

Сегодня компания Capilla занимает прочную рыночную позицию. Этому способствовало стратегическое решение топ-менеджмента ещё в самом начале развития производственного блока. Компания сконцентрировалась на собственных разработках марок покрытых электродов, опираясь не на общепринятый для производителей электродов ассортимент, а на специфические технические требования своих клиентов.

В настоящий момент, компания Capilla уже сама устанавливает стандарты в современных технологиях сварки. Компания гарантирует высокое качество и безопасность своей продукции на самых отвественных участках сварочных работ.

Не зависимо, какой применяется способ сварки, какие металлы свариваются, обращайтесь в нашу компанию за высококачественными сварочными материалами. В представленном у нас ассортименте производства компании Capilla Schweissmaterialien GmbH Вы всегда найдете соответствующий сварочный материал – покрытый электрод, присадочный пруток, сплошную или порошковую проволоку.

Компания Capilla производит высококачественные материалы для сварки:

  • нержавеющих сталей,
  • меди и ее сплавов (в том числе бронзы),
  • чугунов,
  • алюминиевых сплавов.

А также электроды для ремонтной сварки и наплавки, в том числе:

  • для сварки разнородных, трудно свариваемых и специальных материалов,
  • наплавки теплостойких сталей,
  • упрочняющей износостойкой и ударостойкой наплавки,
  • создания любых требуемых характеристик металла на рабочей поверхности изделия.

Специалисты более чем в 40 странах мира доверяют высокому качеству продукции Capilla в области сварки и технологий восстановления деталей наплавкой и сваркой.

Восстановление деталей сваркой, наплавкой и пайкой

Широкое применение в ремонтном производстве нашли сварка, наплавка и пайка.

Сваркой называют процесс получения неразъемных соедине­ний посредством установления межатомных связей между свари­ваемыми частями при их местном или общем нагреве, при пласти­ческом деформировании или совместном действии того и другого.

При ремонте деталей машин распространена газовая аце — тильно-кислородная и электрическая сварка, наплавка.

Механические свойства сварного, наплавленного соединения зависят от процесса плавления металла, последующего охлажде­ния и от структурных изменений основного металла в зонах тер­мического влияния.

Зоной термического влияния называют участок основного металла, прилегающий к сварному или наплавленному шву и из­меняющий от действия тепла сварки, наплавки свою структуру или механические свойства. Для электросварки зона термическо­го влияния составляет 10-12 мм, а для газосварки 25-30 мм. Сте­пень воздействия зоны термического влияния зависит, от вида и состава металла. Для углеродистых и легированных сталей она значительно усложняет производство сварочных и наплавочных работ при ремонте. Поэтому сварку и наплавку ответственных деталей рекомендуется производить с предварительным подогре­вом и при последующем медленном охлаждении.

Для получения доброкачественного сварного соединения или заданного качества наплавленного слоя при восстановлении дета­лей электросваркой первостепенное значение имеют правильный выбор электрода и соблюдение технологии сварки. Выбор элек­трода зависит от характера устраняемого дефекта, марки стали, из которой изготовлена деталь, и требований к наплавленному слою.

Электроды, применяемые для сварки, указаны в ГОСТ 9466-75, ГОСТ 9467-75. Согласно этим ГОСТам электроды имеют 12-но — мерное условное обозначение:

Цифры здесь означают:

1 — тип электрода. Например, Э-46 с пределом прочности на разрыв 460 Н/мм2;

2 — марка покрытия. Например, УОНИ-13/45, ЦЛ-9, ЦЛ-20;

3 — диаметр электрода;

4 — назначение электрода; У — углеродистые и низколегиро­ванные стали с ав 60 Н/мм2; Т — теплостойкие; В — высоколегированные; Н — наплавочные с особыми свойствами;

5 — толщина покрытия. При отношении наружного диаметра d (электрода с покрытием к диаметру стержня do без покрытия, рав­ном 1,2 — покрытие тонкое (обозн. М) D/Do 1,2 + 1,45 — среднее (С), D/D =1,45 + 1,8 — толстое (Д) и D!D = 1,8 — особо толстое (Г);

6 — группа электрода по содержанию фосфора и серы (всего три группы);

7 — минимальный предел прочности и ударная вязкость свар­ного шва (обозначается трехзначным числом, в котором первые две цифры указывают предел прочности, третья — ударную вяз­кость при температуре испытания);

8 — вид покрытия: А — кислые, Б — основные, Р — рутиловые, П — прочие;

9 — допустимое пространственное положение. Принято 4 ин­декса: 1 — в любом положении, 2 — в любом, кроме вертикального сверху, 3 — вертикальное вниз и 4 — горизонтальное на вертикаль­ной плоскости;

10 — полярность (прямая и обратная) и род тока (постоянный или — переменный);

Пример обозначения: Э-46- УОНИ-13/45-3,0- УД2 _ ^

Числитель такой записи показывает на то, что электрод имеет стержень Э-46 с пределом прочности на разрыв 460 Н/мм2, с об­мазкой УОНИ-13/45, диаметром 3 мм, для сварки углеродистой и низколегированной стали, обмазка толстая, группа по содержа­нию фосфора и серы вторая.

Знаменатель: предел прочности сварного шва 430 Н/мм2, ударная вязкость 2 кГм/см2, химический состав покрытия имеет основной характер, сварку можно осуществить в любом положе­нии постоянными токами обратной полярности.

В технических документах электроды обозначаются следую­щим образом: электроды УОНИ — 13/45 — 3,0 — 2 — ГОСТ 9466-75.

При восстановлении изношенных деталей электродуговой наплавкой выбор электродов зависит от марки стали наплавляе­мой детали, необходимой твердости покрытия и износостойкости наплавленного слоя. Наплавку изношенных поверхностей дета­лей, изготовленных из малоуглеродистой стали и не подвергав­шихся термической или химико-термической обработке, можно проводить сварочными электродами. При наплавке деталей из среднеуглеродистых и легированных сталей (например, сталей марок 30, 35, 45), закаленных, а также из малоуглеродистых ста­лей, но с цементированной поверхностью должны применять специальные наплавочные электроды или твердые сплавы. ГОСТ устанавливает ряд типов наплавочных электродов, различаемых по химическому составу наплавленного слоя.

Читать еще:  Пайка молотковым паяльником

Сварка, наплавка деталей из чугуна и цветных металлов свя­зана с рядом трудностей, которые преодолевают специальной термической обработкой, применением присадочных материалов и использованием инертной газовой среды, например аргона.

Паянием называют процесс, состоящий в том, что металли­ческие части соединяют друг с другом в подогретом состоянии при помощи расплавленных металлов или сплавов (припоев), служащих связующими веществами.

В отличие от сварки при паянии основной металл не доводят до пластичного состояния и не расплавляют. Температура плав­ления припоя значительно ниже температуры плавления основ­ного металла.

Восстановление деталей сваркой

Научно-производственная фирма «Плазмацентр» оказывает услуги по восстановлению деталей газовой сваркой любого уровня сложности. Мы обладаем собственной производственной базой, большим опытом работы – более 25 лет, и широкими возможностями – самое современное оборудование, специалисты, прошедшие обучение в России и за рубежом.

Особенности восстановления деталей ручной сваркой и наплавкой

Комплексное восстановление деталей сваркой подразумевает под собой процесс, в результате которого получается прочное неразъемное соединение. Наплавка – это одно из направлений сварки. Она осуществляется за счет нанесения расплавленного метала на поверхность изношенной детали.

Виды ручной сварки

  • газовая;
  • электродуговая.

Газовую сварку используют для обработки элементов из тонколистных металлов, электродуговую – для заварки отверстий, трещин. Комплексное восстановление деталей электродуговой сваркой обеспечивает ровный и надежный шов. Ее можно производить в любом положении, что дает возможность работать с высокой скоростью и с любыми видами стали.

Область использования

Ремонт и восстановление деталей сваркой и наплавкой применяют для обработки стали, цветного металла и чугуна. С помощью них ремонтируют картеры, звенья гусениц, валы, опорные катки и ковши. Восстановление деталей с помощью сварки – это быстрый и экономически выгодный процесс, обеспечивающий надежное покрытие и крепкий шов.

С помощью него можно устранить

  • пробоины;
  • срывы;
  • отколы;
  • трещины;
  • износ.

Ручная сварка универсальна. Она позволяет работать с широким диапазоном деталей больших и маленьких размеров, наплавлять чугун, латунь, осуществлять твердый припой.

Чем электродуговая сварка отличается от газовой

Электродуговая сварка позволяет обрабатывать крупногабаритные и сложные по своей конфигурации детали, восстанавливать их формы и размеры. Газовая методика отличается от нее большей зоной термического влияния – 2-3 см, но ее результат во многом зависим от опыта и квалификации работника.

Восстановление сваркой в компании «Плазмацентр»

У нас вы сможете восстановить детали любых форм и размеров, вернуть им первоначальную форму и избавить от изъянов, появившихся в процессе длительной эксплуатации и высокой нагрузки на элементы. Всем своим клиентам мы гарантируем:

  • 100% качество;
  • доступные цены;
  • соблюдение сроков;
  • полную конфиденциальностью.

Если вам нужно восстановить изношенные детали, модифицировать или усилить их, звоните нам по телефону: +7 (812) 679-46-74 или оставьте заявку онлайн.

Другие услуги

Свяжитесь с нами по телефонам: +7 (812) 679-46-74, +7 (921) 973-46-74, или напишите нам на почту: office@plasmacentre.ru

Наши менеджеры подробно расскажут об имеющихся у нас технологиях нанесения покрытий, упрочнения, восстановления, придания свойств поверхности, а также о стоимости услуг компании.

Сварка и наплавка. Общие сведения восстановления деталей сваркой и наплавкой

Сварка и наплавка являются наиболее распространёнными в авторемонтном производстве способами восстановления деталей (около 40%). Широкое применение сварки и наплавки обусловлено простотой технологического процесса и применяемого оборудования, возможностью восстановления деталей из любых материалов и сплавов, высокой производительностью и низкой себестоимостью.

Сварку применяют при устранении механических повреждений в деталях (трещин, отколов, пробоин и т.п.), а наплавку — для нанесения металлических покрытий на поверхности деталей с целью компенсации их износа.
При устранении механических повреждений деталей применяют электродуговую, газовую, аргонно-дуговую, в среде углекислого газа, электроконтактную и др. виды сварки.
Для нанесения металлических покрытий на изношенные поверхности деталей наиболее широкое применение получили следующие механизированные способы наплавки: автоматическая электродуговая наплавка под слоем флюса; наплавка в среде углекислого газа; вибродуговая; плазменная и электроконтактная.
Технологический процесс восстановления деталей сваркой и наплавкой включает в себя:

1. подготовку деталей к сварке, наплавке;

2. выполнение сварочных, наплавочных работ;

3. обработку деталей после сварки и наплавки.

Объём и характер работ, выполняемых при подготовке детали к сварке, зависят от вида дефекта. Так, при заварке трещины сначала сверлят отверстия Ø 4-5 мм на концах трещины для предупреждения возможности её дальнейшего распространения. Затем разделывают трещину шлифовальным кругом с помощью ручной шлифовальной машины. При толщине стенок детали менее 5 мм трещину можно не разделывать, а ограничиться только зачисткой её кромок, если больше 5 мм, то производят «V» — образную разделку кромок трещины, а при толщине стенок свыше 12 мм — «X» — образную разделку.

При восстановлении резьбы в отверстии менее 25 мм подготовка к сварке заключается в удалении старой резьбы сверлением с последующей разделкой кромок сверлом большего диаметра.
Точно так же подготавливают к восстановлению гладкие отверстия небольшого диаметра.
Подготовка изношенных поверхностей деталей к наплавке заключается в их механической обработке и очистке от загрязнений и окислов.
Порядок выполнения сварочных и наплавочных работ зависит от выбранного способа сварки (наплавки). Особое внимание при этом должно быть уделено выбору материала электродов и присадочных прутков, т.к. от них зависит качество наплавленного металла. Большое внимание необходимо уделить выбору средств защиты металла от окисления и определению параметров режима сварки и наплавки.
2. При этом способе наплавки механизированы два основных движения электрода — подача его по мере оплавления к детали и перемещения вдоль сварочного шва.
Деталь устанавливают в патроне или центрах специально переоборудованного токарного станка, а наплавочный аппарат на его суппорте. Электродная проволока подаётся из кассеты роликами подающего механизма наплавочного аппарата в зону горения электрической дуги. Движение электрода вдоль сварочного шва достигается за счёт вращения детали. Перемещение электрода по длине наплавляемой поверхности обеспечивается за счёт продольного движения суппорта станка. Наплавка производится винтовыми валиками с взаимным их перекрытием на одну треть. Флюс в зону горения дуги поступает из бункера.
При автоматической наплавке эл. дуга горит не на открытом воздухе, а под слоем расплавленного флюса. Выделяющееся при плавлении электрода, (эл. дуга горит) основного металла и флюса газы образуют над сварочной ванной свод, ограниченный сверху жидкими шлаками, а снизу расплавленным металлом. В зоне сварки всегда избыточное давление газов, которое препятствует доступу воздуха к расплавленному металлу.
Принципиальная схема
Автоматической
электродуговой наплавки
деталей под слоем флюса:
1. наплавочный аппарат;
2. кассета с проволокой;
3. бункер с флюсом;
4. электродная проволока;
5. наплавляемая деталь.

Наплавка металла под флюсом обеспечивает наиболее высокое качество наплавленного металла, т.к. сварочная дуга и ванна жидкого металла полностью защищены от вредного влияния кислорода и азота воздуха, а медленное охлаждение способствует наиболее полному удалению из наплавленного металла газов и шлаковых включений. Медленное охлаждение наплавленного металла обеспечивает так же более благоприятные условия для наиболее полного протекания диффузных процессов и, следовательно, легирования

Наиболее часто применяемыми припоями при ремонте автомобилей
являются:

· алюминиевые.
Оловянно-свинцовые припои относятся к низкотемпературным , температура плавления не более 280 с. Они обладают достаточно высокой противокоррозийной стойкостью и высокими технологическими свойствами, прочность пайки по пределу прочности на разрыв не превышает 50..80МПа.

Флюсы, с помощью их освобождаются спаиваемые поверхности деталей от окислов и предохраняют их от окисления в процессе пайки.
К флюсам предъявляются требования, исходя из которых они должны:

· вступать в химическое взаимодействие или растворять окислы при более низкой температуре чем температура; плавления припоя;

· уменьшать силы поверхностного натяжения расплавленного припоя и улучшать его растекаемость;

· хорошо смачивать в расплавленном состоянии металлические поверхности;

· не оказывать коррозийного воздействия на соединяемые детали и припои;

легко удаляться с поверхности деталей после пайки. Пайка деталей производится паяльником или погружением деталей в расплавленный припой. Кромки спаиваемых деталей нагревают выше температуры полного расплавления припоя на 40-50 о С. Рабочая часть паяльника изготовляется из красной меди. При пайке погружением припой расплавляют в электрическом тигле. размеры которого определяются размером соединяемых деталей. Обработка деталей после пайки включает:

· медленное охлаждение до температуры полного затвердевания припоя;

· паяный шов промывают горячей водой от остатков флюса;

· зачищают от наплывов припоя.
Алюминий и его сплавы паяют обычно абразивными и ультразвуковыми паяльниками (низкотемпературными припоями).

Абразивный паяльник состоит:

металла через проволоку и флюс. Применяют два вида флюсов: плавленые (АН — 348А, АН — 20, АН — 30) и керамические (АНК — 18, АНК — 19).

Читать еще:  Пайка теплообменника газового котла

Дата добавления: 2014-10-29 ; просмотров: 3364 . Нарушение авторских прав

Восстановление деталей сваркой наплавкой пайкой

Технологии сварки и наплавки позволяют эффективно восстанавливать металлические детали, обеспечивая высокую степень надежности и долговечности изделия.

Это подтверждается и практикой использования данных методов при выполнении ремонтных операций в самых разных областях – от починки автомобилей до производства металлопроката. В общем объеме работ по ремонту металлических конструкций восстановление деталей сваркой и наплавкой занимает порядка 60-70%. Наиболее распространена починка стальных блоков цилиндров, моторных валов, картеров, цепных звеньев, лопаток и т. д.

Сварка и наплавка в ремонтно-восстановительных работах

Оба способа основываются на методах термического воздействия с разными параметрами работы подключаемого оборудования. Под сваркой понимается процесс формирования межатомных связей, которые могут использоваться для соединения разных элементов детали, заделки технологических зазоров и устранения мелких дефектов на поверхности. Энергетический потенциал для сварочного процесса обеспечивается за счет общего или местного нагрева заготовки.

К типовым операциям данного рода можно отнести закрепление добавочных или отломанных частей пластин, венцов и втулок. Кроме ремонта изделий с простыми геометрическими формами, возможны и более сложные восстановительные задачи, но в составе с другими технологическими операциями. Например, восстановление резьбы сваркой будет дополняться процедурами механической правки и проточки. К тому же в подобных работах следует соблюдать требования к перегревам вспомогательного инструмента наподобие плашек, которые непосредственно участвуют в коррекции резьбы.

Что касается наплавки, то этот способ подразумевает нанесение дополнительного металлического покрытия на восстанавливаемую поверхность. Новый технологический слой может быть полезен при ремонте изношенных деталей или усиления поверхности в области трения.

Применяемое оборудование

При сварочных работах обязательно используется источник тока, оснастка для удержания детали и направления дуги. Чаще применяют сварочный преобразователь, в состав которого входит двигатель с генератором постоянного тока от 70 до 800 А. Также могут задействоваться выпрямители с трансформаторами тока и пускорегулирующей установкой. Если говорить о расходниках и вспомогательных устройствах, то восстановление деталей сваркой и наплавкой выполняется с подключением удерживающих мундштуков, электродов и систем охлаждения. При наплавке также задействуют деформирующие головки с суппортами и подъемниками, допускающими возможность крепления на станках (токарных или винторезных). Для удаления лишних металлических кромок и слоев применяются специальные резцы.

Требования к подготовке детали

И при сварке, и в процессе наплавки качество выполнения операции в немалой степени будет определяться изначальным состоянием заготовки. Поверхности детали должны быть зачищены от ржавчины, окалины, грязи и жира. В ином случае повышается риск сохранения непроваров, трещин и шлаковых включений. Особое внимание следует уделить обезжириванию от заводских и консервационных масел. Эту процедуру выполняют в горячем растворе, после чего изделие омывается и сушится. Перед восстановлением деталей способом сварки рекомендуется выполнять и пескоструйную обработку, что повышает качество ремонта. Для таких задач используют методы абразивной обработки с подключением компрессорного оборудования, шлифовальных дисков и резцов. Незначительные следы коррозийного поражения можно удалить и ручными металлическими щетками.

Какие электроды используются при восстановлении?

После подготовки основного рабочего оборудования и заготовки можно приступать к выбору электродов. Подбор зависит от вида металла, характера дефекта и требований к слою наплавки. Как правило, в распространенных случаях обломов и трещин используют обычные сварочные электроды с сопротивлением разрыву порядка 4 МПа. Для работы с углеродистыми сталями рекомендуется применять расходники, стержни которых выполнены из проволоки марки Св-08 толщиной 1,5-12 мм. Не стоит игнорировать и характеристики покрытия. Высокий стабилизирующий эффект при восстановлении деталей сваркой и наплавкой обеспечит меловая обмазка электрода типа Э-34. Она будет способствовать устойчивому процессу горения дуги, что позволит сформировать плотный и ровный шов.

Также сегодня используются нестандартные электродные расходники наподобие ленточных и трубчатых порошковых элементов. Обычно они представляют собой свернутые металлические ленты толщиной до 0,8 мм, поверхность которых наполнена различными порошкообразными легирующими смесями на основе ферромарганца, сталинита и др. К таким электродам стоит обращаться, если планируется наделять ремонтируемый участок дополнительными эксплуатационными свойствами.

Ручной дуговой метод сварки и наплавки

При восстановлении поврежденных сварных швов, заделке трещин и запайке герметичных корпусов можно применять ручной метод с графитовыми, угольными или вольфрамовыми электродами. В ходе работы берется пучок стержней с обмазкой и скрепляется проволокой. Окончания необходимо предварительно сварить и вставить в подготовленный держатель. В ходе работы электроды сформируют так называемую блуждающую дугу с широким полем действия. Чем больше площадь поврежденного участка, тем крупнее должен быть пучок. Главная сложность процесса сварки таким способом заключается в необходимости подключения трехфазной сети, поскольку та же наплавка пучком из 5-6 электродов должна производиться на повышенном токе. Таким методом ремонтируют детали из легированных и низколегированных сталей средней и большой толщины.

Метод автоматической наплавки под флюсом

Автоматический процесс наплавки отличается тем, что подача электрода с перемещениями самой дуги по рабочей поверхности полностью механизируются. Флюс, в свою очередь, обеспечивает изоляцию целевой зоны от вредного воздействия кислорода. Метод задействуется для восстановления поверхностей плоских и цилиндрических деталей с глубиной износа до 15 мм. По мере увеличения размера дефекта может применяться несколько слоев наплавки, но в этом случае потребуется ожидание полимеризации каждого предыдущего пласта. Данная технология восстановления деталей сваркой и наплавкой требует подключения источников тока в виде преобразователя или выпрямителя с токарно-винторезным станком. В рабочей зоне формируется покрытие флюса толщиной 1-4 мм, после чего автоматом направляется электродная проволока с дугой. К основным достоинствам этого метода относительно ручной сварки можно отнести минимальные потери металла в результате разбрызгивания. Ручной метод дает в несколько раз больше огарков и угара.

Метод вибродуговой наплавки

В данном случае применяются плавкие электроды, которые в процессе горения дуги вибрируют с короткими замыканиями. Операции подачи и перемещения расходных материалов также автоматизированы. Несмотря на внешнюю сложность процесса, метод довольно простой и не требует применения специальной оснастки. Более того, в конечном счете можно ожидать исключения деформации детали с сохранением твердости без термической обработки. Однако есть и ограничения. Так, вибрационные способы восстановления деталей сваркой и наплавкой подходят для заготовок с диаметром не менее 8 мм или толщиной от 0,5 до 3,5 мм. Теоретически вибродуговая наплавка может выполняться в разных защитных средах с газом или флюсом, но на практике чаще задействуют жидкостную изоляцию – например, кальцинированный раствор соды.

Сварка и наплавка в газовых защитных средах

Этот метод предусматривает подготовку специального баллона со сжатой газовой смесью. Могут использоваться аргоновые и углекислотные газы, направляемые в зону сварки под высоким давлением. Задача смеси также сводится к защитной функции изоляции заготовки от негативного воздействия азота и кислорода в воздухе. Наиболее качественные соединения сваркой в газовых средах получаются при использовании вольфрамовых электродов с отдельным вводом в рабочую зону присадочных материалов. Наплавка осуществляется под постоянным током с обратной полярностью. Процесс может быть механизирован, если применяется электродная проволока, но операции с газоэлектрическими горелками обычно выполняют вручную.

Полуавтоматические способы сварки и наплавки

Оптимальный метод для работы с алюминием и различными сплавами цветмета. Благодаря гибкой настройке параметров оборудования и возможностям использования разных защитных сред оператор может получить при небольшой силе тока качественный шов на заготовке толщиной до 12 мм. Полуавтоматический метод восстановления деталей сваркой производится с помощью вольфрамовых электродов толщиной 0,8-6 мм. Напряжение при этом может варьироваться от 20 до 25 В, а сила тока укладывается в 120 А.

Альтернативная технология восстановления под давлением

Кроме термических способов сварки и наплавки, также применяется широкая группа контактных или холодных методов изменения структуры металлических заготовок. В частности, восстановление деталей сваркой под давлением осуществляется с помощью механических агрегатов с пуансонами. В процессе пластической деформации в точках контакта формируется сварное соединение с определенными параметрами. Конфигурация деформирующего эффекта будет зависеть от характеристик пуансона и техники оказания сжатия.

Заключение

На сегодняшний день не существует более действенных способов коррекции дефектов металлической структуры, чем сварка и наплавка. Другое дело, что в данных сегментах наблюдается активное развитие разных методик реализации технологии на практике. Наиболее перспективным направлением можно назвать восстановление деталей сваркой и наплавкой на автоматизированном оборудовании. Механизация выполнения ремонтных операций повышает производительность процесса, его эргономичность и уровень безопасности для сварщика. Параллельно развиваются и методы высокоточной аргонодуговой сварки с подключением газовых защитных сред. О полной автоматизации в этом направлении пока еще рано говорить, но в плане качества результата эта область является передовой.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×