1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Припой для пайки титана

Технологический процесс пайки металлов

Титан по совокупности физико-механических свойств является одним из важнейших современных конструкционных материалов. Он почти в 2 раза легче, чем углеродистые стали и многие цветные сплавы, его плотность равна 4,5 г/см 3 .

Титан высокопрочный (σв = 30 ÷ 60 кгс/мм 2 ) и пластичный металл (б = 25 ÷ 50%). Коррозионная стойкость титана в ряде агрессивных сред превосходит нержавеющие стали.

Титан довольно широко распространен в природе, его в 10 раз больше, чем Мп, Сr, Си, Zn, V, Ni, Со, Mn, W и Nb вместе взятых. Эти и ряд других ценных свойств открывают большие возможности широкого применения титана в промышленности.

На поверхности титана всегда имеется альфированный слой, насыщенный атмосферными газами. Перед пайкой этот слой необходимо удалить пескоструйной обработкой или травлением в растворе следующего состава: 20-30 мл H2N03, 30-40 мл.НCl на литр воды.

Время травления 5-10 мин при комнатной температуре. После такой обработки на поверхности титана все же остается тонкая окисная пленка, препятствующая смачиванию титана припоем.

Поэтому иногда пытаются паять титан с применением специальных флюсов, по составу и химизму действия аналогичных флюсам для пайки алюминия. Но соединения титана, паянные с применением таких флюсов, получаются недостаточно качественными.

Обычно пайку титана и его сплавов ведут в вакууме или в аргоне марки А, который тщательно очищен от примесей кислорода, азота и паров воды. Только в такой чистой атмосфере или в вакууме окисная и нитридная пленки на титане растворяются в металле при условии, что температура пайки выше 700°С.

Поэтому процесс пайки титана ведут обычно при температуре 800-900°С, что способствует быстрой очистке поверхности титана и хорошему смачиванию его припоями.

Пайку титановых сплавов при более высокой температуре производят довольно редко, особенно печную, так как при длительном нагреве при температуре выше 900° С он склонен к росту зерна и к некоторому снижению пластических свойств.

Поскольку предел прочности основного металла при этом практически не снижается, то в отдельных случаях соединение титановых сплавов пайкой производят даже при 1000° С

Водород, всегда находящийся в титане и снижающий его пластичность, удаляется при пайке (или нагреве) в вакууме 10- 4 мм рт. ст. при температуре около 900° С, поэтому пайка титана в вакууме предпочтительнее чем пайка в нейтральной атмосфере.

При выборе припоя, способа и режимов пайки необходимо иметь в виду, что титан образует хрупкие интерметаллиды в паяном шве почти со всеми элементами, входящими в припои.

Поэтому в качестве основы припоя часто выбирают серебро, которое образует с титаном интерметаллиды, предположительно менее хрупкие, чем с другими металлами.

Иногда за основу припоев выбирают алюминий, который образует с титаном oграниченную область твердых растворов, что позволяет рассчитывать получение менее хрупких, паяных соединений.

Из указанных припоев практическое применение нашли серебряные припои, которые позволяют получить при пайке в печи при температуре 950-1000°С высокопрочные паяные соединения.

Так, например, при пайке титана ВТ1Д чистым серебром в атмосфере аргона предел прочности (σв) паяных соединений составляет 18- 20 кгс/мм 2 , а при пайке серебром, легированным марганцем (10-15%), предел прочности (σв) паяных соединений достигает 28 кгс/мм 2 .

При этом соединения, паянные чистым серебром, неустойчивы против коррозии и в течение года (в городской атмосфере) снижают свою прочность на 25-30%.

Еще более высокие значения предела прочности паяных соединений можно получить при высокотемпературной пайке титана припоями на основе никеля или меди (σв = 30 кгс/мм 2 ), но эти металлы очень быстро растворяют его, вызывая сильную эрозию и охрупчивание в зоне швов.

Для получения более пластичных и прочных соединений с успехом применяют диффузионную пайку титана, сущность которой заключается в том, что изделие, паянное минимально необходимым количеством припоя, например никелем, медью, железом, кобальтом и другими металлами, выдерживают при температуре пайки до тех пор, пока в паяном соединении не образуется пластичный твердый раствор. Прочность соединений, полученных таким способом, близка к прочности основного металла.

Пайка титановых сплавов оловянно-свинцовыми и другими низкотемпературными припоями применяется редко. В этом случае перед пайкой титан покрывают никелем химическим или гальваническим способом. Для увеличения сцепления никеля с титаном его подвергают нагреву до 250° С в течение 1 ч. После этого пайку производят теми же припоями и флюсами, которые применяют для чистого никеля.

Паять титан и его сплавы легкоплавкими припоями возможно также после предварительного покрытия деталей оловом, серебром или медью. Для покрытия оловом подготовленное под пайку изделие быстро опускают на 10-20 мин в нагретое до 700° С олово.

Покрыть титан оловом можно и при помощи флюса, в состав которого входит хлористое олово. Компоненты флюса просушивают и применяют в мелкоразмолотом виде. Деталь покрывают флюсом толщиной до 3 мм и нагревают в печи с нейтральной средой до 350-400°С.

Медное покрытие может быть получено погружением изделия на несколько секунд в расплавленную хлористую медь или ее смесь с другими хлоридами меди при температуре 650-700°С.

Серебром титан покрывают методом погружения изделия в расплавленное серебро. После охлаждения деталь очищают от остатков флюса и шлака паром или кипячением в воде с последующей зачисткой наждачной бумагой или щеткой. Луженое изделие паяют легкоплавкими припоями с температурой плавления не более 200°С с применением канифольных флюсов.

Перед нанесением покрытия детали обрабатывают в соответствии с технологией, применяемой в гальванотехнике.

П

Особенности пайки титана и титановых сплавов определяются его высокой химич. активностью. В связи с большой растворимостью кислорода и азота в титане на его поверхности при нагреве на воздухе образуется альфированный хрупкий слой, а также стойкие окислы титана. Водород, мало растворимый в альфа-титане, образует в альфа- сплавах гидриды титана, охрупчивающие их; водород в бета-титане растворим в большей степени и ускоряет эвтектоид- ный распад в a -f- р-титановых сплавах. Ввиду отсутствия достаточно активных флюсов для пайки титановых сплавов их не паяют на воздухе, а в связи с охрупчиванием, вызываемым водородом и азотом, не паяют и в среде водорода и азота. Пайка титановых сплавов производится только после удаления с поверхности деталей окислов и альфированного слоя механич. зачисткой или химич. травлением после гидропескоструйной обработки (напр., в растворе состава: 30 мл НС1, 20 мл HF, 950 см3 Н20 в течение 4—6 мин. при 20°). При пайке серебряными припоями и припоями Ti—Ni детали нагревают в среде проточных чистых и сухих нейтральных газов, чаще всего в аргоне. П. т. с. возможна в сравнительно невысоком вакууме (1-10″2—1-10-*мм рт. ст.). При пайке титановых сплавов алюминием и оловом паяемую поверхность предварительно лудят путем быстрого погружения в перегретое до 600—650° олово или перегретый до 850—900° алюминий и затем паяют с обычными для этих припоев флюсами (см. Припои легкоплавкие, Припои для пайки алюминиевых сплавов). Пайка сплава ВТ1 оловом и припоем ПОС40 возможна также в среде чистого сухого проточного аргона. При лужении титана алюминием применяют флюсы для пайки алюминиевых сплавов.

Читать еще:  Влияние температуры паяльника на качество пайки

Титан образует с большинством металлов хрупкие химич. соединения, поэтому паяные швы обладают пониженной пластичностью и прочностью, а осн. материал интенсивно растворяется в жидких припоях. При нагреве выше 1000° многие титановые сплавы склонны к сильному росту зерна и к необратимому ухудшению механич. св-в. Более высокая прочность паяных соединений из титана и его сплавов может быть получена при диффузионной пайке, в результате диффузии компонентов припоя (напр., меди, ннкеля, серебра) в основной металл. Это обусловлено способностью титана к образованию широких областей твердых растворов с нек-рыми металлами (Ag, Ni, Си).

Для предотвращения интенсивного растворения титана в жидких припоях и об разования прослоек хрупких интерметаллидов в паяных швах нагрев деталей под пайку должен быть ограниченным по темп- ре и возможно более кратковременным, а припой строго дозированным. Иногда для этой цели, а также для предотвращения окисления титана на воздухе на паяемые поверхности предварительно наплавляют серебро или наносят др. покрытия, напр. никель (химич. способом; слой 10— 20 мк). Для улучшения адгезии между никелевым покрытием и осн. материалом детали нагревают при 250° в течение 2— 2,5 час. Наносить промежуточные покрытия на титановые сплавы совершенно необходимо при пайке их со сталью или медными сплавами, а также при пайке в пламени газовых горелок или токами высокой частоты на воздухе. Пайка титановых сплавов. выполняется в вакуумных печах или спец. герметизированных контейнерах, напр. из нержавеющих сталей, предварительно вакуумированных или продуваемых сухим чистым аргоном. Детали загружаются в электропечи, нагреваемые кварцевыми теплоизлуча- телями. Пайка в аргоне проходит более успешно при экранировании паяемой детали от поступающей в контейнер струи аргона.

Для предотвращения интенсивного роста зерна титана и его сплавов рабочая темп-ра применяемых припоев должна быть не выше 1000° (см. Припои для пайки титановых сплавов).

Лит.: Горячев А. П. [и др.], Аргоно-дуговая сварка и пайка титана, Л., 1957; Лашко- Авакян С. В., Лашко Н. Ф., Пайка легких металлов (магния, титана, бериллия) и их сплавов, М., 1958; Титан и его сплавы, под ред. Л . С . Мороза , т . 1, Л ., 1960; Brazing titanum sandwich, «Aircraft and Missiles», 1959, v. 2, № 11, p. 22. Лит. см. также при ст. Пайка.

Технология пайки титана в домашних условиях

Титан по физико-механическим характеристикам выступает в качестве наиболее важного современного конструкционного материала. Его довольно широко используют в промышленности и быту, поэтому в некоторых случаях производится его пайка. Его вес практически в 2 раза меньше, если производить сравнение с углеродистыми сталями и рядом цветных сплавов. Показатель его плотности эквивалентен 4,5 г/см 3 . Титан – очень прочный (минимальный показатель σв равен 300 МПа), пластичный (δ эквивалентен пределу от 25 до 50 %) металл; показатель его коррозионной устойчивости в некоторых агрессивных средах превышает данную характеристику, свойственную коррозионно-стойким сталям.

Аргоно-дуговая сварка титана.

Особенности пайки титана

На поверхности титана есть альфированный налет, который предполагает наличие атмосферных газов. Перед процессом пайки упомянутый слой следует устранять, применяя для этого пескоструйную обработку, заменить которую можно методом травления в смеси с определенным составом: 20-30 мл H2NO3, 30-40 мл НСl и 1 л воды. Период травления должен быть ограничен 5-10 мин. тогда как температурный показатель должен быть равен 20° С. После подобной обработки на поверхности материала все же будет присутствовать оксидный налет незначительной толщины, он станет препятствовать смачиванию основания припоем. По этой причине в домашних условиях мастера пытаются паять материал с использованием специальных флюсов, состав которых походит на тот, что имеют флюсы, предназначенные для работы с алюминием. Однако стоит быть готовым к тому, что сопряжения, получаемые посредством подобных флюсов, не обладают значительной прочностью и качеством.

Схема лазерной пайки расклинивающих пластин.

Как правило, титан и его сплавы претерпевают пайку в условиях вакуума или аргона, последний должен быть освобожден от частиц кислорода, водных паров и азота. Исключительно в идеальных условиях оксидный и нитридный налеты на поверхности материала нейтрализуются в металле, что верно, если температурный режим во время работ превышает показатель в 700° С. Это обуславливает работу с титаном при температурном режиме в пределах от 800 до 900° С, что гарантирует скорую очистку основания материала и интенсивное смачивание его припоями.

Пайку титановых сплавов при значительных температурах осуществляют не столь часто, что особенно касается печной плавки. Это объясняется тем, что при длительном нагреве, когда температура превышает 900° С, проявляется склонность к увеличению зерна и ухудшению пластических характеристик. Так как уровень прочности главного металла при этом почти не изменяется, в некоторых случаях сопряжение титановых сплавов методом пайки осуществляется и при отметке в 1000° С.

Водород, присутствующий в титане и понижающий его пластичность, устраняется в процессе пайки или во время нагрева при отметке в 900° С. Поэтому работа с титаном должна производиться в пространстве, лишенном воздуха, это предпочтительнее по сравнению с работами в условиях нейтральной атмосферы.

Титан хоть и предполагает обеспечение сложных условий, но все же поддается плавке, тогда как чугун относится к трудносвариваемым металлам.

Увеличение температуры при сварке и последующее охлаждение способствуют изменениям структуры характеристик чугуна в областях расплавления и шва, что указывает на то, что получить соединения, лишенные дефектов, с требуемым уровнем свойств, очень сложно.

  • необходимость использования специальных флюсов;
  • необходимость вакуума;
  • рекомендуется использовать в качестве основы припоя серебро.

Рекомендации по проведению пайки

Схема установки пайки волной.

Пред тем как произвести пайку титана дома, нужно правильно подобрать припой, метод и особенности проведения работ. Следует учесть, что титан способствует возникновению хрупких интерметаллидов в паяном шве практически со всеми элементами, которые находятся в припое. По этой причине в роли основы припоя, как правило, предпочитают серебро, образующее с титаном не столь хрупкие интерметаллиды по сравнению с остальными металлами.

Произвести качественную пайку чугуна самостоятельно весьма проблематично, что касается и пайки титана в вакууме посредством бездобавочного алюминия. Это объясняется тем, что в шве возникают интерметаллидные фазы, а сопряжение не обладает никакой прочностью.

Толщину прослойки можно минимизировать, если в роли припоя использовать алюминий, легированный Ni. Этот и некоторые иные элементы по 1% сказываются на вытеснении интерметаллидной прослойки.

Пайку сплавов описываемого металла посредством оловянно-свинцовых или иных низкотемпературных припоев используют нечасто. В данном случае перед началом работ титан нужно покрыть никелем, применив химический или гальванический метод. А вот если необходимо использовать чугун в процессе пайки, то предпочтительнее доверить дело профессионалам.

Читать еще:  Какие бывают флюсы для пайки?

Пайка титановых сплавов

Способность к пайке титана и титановых сплавов зависит от его высокого химического состава. Активность. Благодаря высокой растворимости кислорода и азота в титане при нагревании на воздухе на поверхности образуется альфа-хрупкий слой и образуется стабильный оксид титана.

Водород, который слегка растворяется в альфа-титане, образует гидрид титана в альфаф-сплавах и охрупчивает их. Водород в бета-титане более растворим и ускоряет распад эвтектоидных сплавов a-f-p-титана.

Поскольку для пайки титановых сплавов недостаточно активного флюса, они не спаяны на воздухе и не спаяны в среде водорода и азота из-за охрупчивания водородом и азотом.

Титановые сплавы паяют только после механического удаления оксидных и альфа-слоев с поверхности детали. Пилинг или химические вещества. Травление после пескоструйной обработки водой (например, в растворе состава: 20 мл в течение 4-6 минут, 30 мл HCl, 20 мл HF, 950 см3 H2O)

При пайке серебряными и Ti-Ni припоями детали нагреваются в чистой, сухой, нейтральной газовой среде. В большинстве случаев аргон. P. t.s. Возможно при относительно низком вакууме (1-10 «2-1-10- * мм рт. Ст.).

При пайке титановых сплавов с алюминием и оловом паянную поверхность сначала покрывают оловом в олове, нагретом до 600-650 °, или алюминием, нагретым до 850-900 ° Паяется с флюсом.

Пайка сплава VT1 с оловом и припоем POS40 также возможна с использованием чистого сухого текучего аргона. Когда олово покрыто алюминием, флюс используется для пайки алюминиевых сплавов.

  • Титан образует хрупкие химические вещества с большинством металлов. Поэтому паяные швы менее пластичны и прочнее, а нижняя осн. Материал сильно растворяется в жидком припое.

При нагревании выше 1000 ° С многие титановые сплавы подвержены сильному росту зерна и необратимой механической деградации. св. Более высокая прочность титановых и его сплавных паяных соединений достигается диффузионной пайкой в ​​результате диффузии компонентов припоя (медь, никель, серебро и т. Д.) В основной металл. Это связано с тем, что титан может образовывать широкий спектр твердых растворов с определенными металлами (Ag, Ni, Cu).

Чтобы предотвратить интенсивное растворение титана в жидком припое и образование интерметаллических слоев в паяных соединениях, нагрев деталей во время пайки ограничен по температуре, и в некоторых случаях может потребоваться более короткое нагревание.

Припой должен быть строго введен.

Иногда серебро предварительно осаждается на паяемой поверхности или другие покрытия наносятся для этой цели и для предотвращения окисления титана в воздухе. Никель (химический метод; слой 10-20 мкм). Для улучшения адгезии между никелевым покрытием и основным. Материальные части нагревают при 250 ° С в течение 2-2,5 часов.

При пайке титанового сплава сталью или медным сплавом и при пайке пламенем газовой горелки или высокочастотным током на воздухе абсолютно необходимо нанести промежуточное покрытие на титановый сплав.

  • Пайка титанового сплава. Вакуумная печь или специально запущенная. Из герметичного контейнера, например из нержавеющей стали, предварительно откачали или продули сухим чистым аргоном.

Детали загружаются в электропечь, нагреваемую кварцевым излучателем. Пайка с аргоном более успешна, когда экранирует припаянные части от потока аргона, поступающего в контейнер.

Для предотвращения интенсивного роста зерен титана и его сплавов рабочая температура используемого припоя должна быть ниже 1000 ° (см. Припой из титанового сплава).

Обо мне
Как заказать?
Отзывы

Р
Смогу помочь!
Присылайте в whatsapp:

+79219603113

Если у вас сайт открыт сейчас со смартфона, нажмите на кнопку и диалог в whatsapp откроется автоматически!

Написать сообщение

Если вы с ноутбука, компьютера, планшета, зайдите на сайт со смартфона.

f9219603113@gmail.com

Образовательный онлайн-сервис для студентов и школьников

Если не указано иное, контент на этом сайте лицензирован под международной лицензией Creative commons attribution 4.0

Копирование материалов сайта возможно только с указанием активной ссылки «www.9219603113.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт

Все авторские права на размещённые материалы сохраняются за правообладателями. Любое коммерческое и другое использование кроме предварительного ознакомления запрещено. Публикация предоставленных материалов не преследует за собой коммерческой выгоды. Публикация являются рекламой бумажных изданий этих документов. Я оказываю услуги по сбору, компоновке и обрабатыванию информации по теме заданной мне Клиентом. Результат работы не будет готовым научным трудом, но может быть источником для его самостоятельного изучения и написания.

Пайка титана и титановых сплавов

Общая характеристика

На поверхности титана есть т.н. альфированный слой, насыщенный атмосферными газами. Перед началом пайки такой слой нужно удалить пескоструйной обработкой или способом травления в растворе HNO3 (20−20 мл) и НСl (30−40мл) на 1 л воды. Время травления составляет от 5 до 10 мин при температуре 20 °C. После этой обработки еще остается оксидная тонкая пленка на поверхности титана, которая препятствует смачиванию его поверхности припоем. Как правило, пайка титана и титановых сплавов проводится в аргоне или вакууме, тщательно очищенном от примесей азота, паров воды и кислорода. В связи с этим, пайка титана проводится, как правило, при t° от 800 до 900 °C. Это обеспечивает быструю очистку его поверхности хорошее смачивание его припоями. При более высоких температурах пайка сплавов титана проводится редко, поскольку при длительном нагреве выше 900 °C появляется склонность к увеличению зерна, а также ухудшаются пластические свойства. Снижает пластичность металла находящийся в нём водород. Водород удаляется в процессе пайки или при нагреве до t° 900 °C в вакууме при давлении 0,01 Па. В связи с этим, пайка титана в вакууме предпочтительнее, чем в нейтральной атмосфере.

Интерметаллиды

Выбирая припой, способ и режим пайки следует помнить, что титан способен образовывать в паяном шве хрупкие интерметаллиды со всеми элементами, которые входят в припои. Поэтому для основы припоя часто применяют серебро. Оно образует с титаном интерметаллиды, имеющие наименьшую хрупкость.

Низкотемпературные припои

Пайка титана оловянно-свинцовыми и др. низкотемпературными припоями используется довольно редко. В данном случае перед началом пайки титан покрывают никелем гальваническим или химическим способом. Чтобы увеличить сцепление никеля и титана детали нагревают до t° 250 °C в течение часа. Затем его паяют такими же флюсами и припоями, как и для чистого никеля. Паять титан и его сплавы с помощью низкотемпературных припоев также можно после предварительного покрытия серебром, медью или оловом. Чтобы покрыть оловом изделие подготовленное под пайку, его быстро опускают в нагретое до t° 700 °C олово на 10−20 минут. При помощи флюса, в который входит хлористое олово, также можно покрыть титан оловом.

Купить, цена

Компания ООО «Электровек-сталь» реализует металлопрокат по оптимальной цене. Она формируется с учетом ставок на LME (London metal exchange) и зависит от технологических особенностей производства без включения дополнительных затрат. Поставляем полуфабрикаты из титана и его сплавов в широком ассортименте. Все партии изделий имеют сертификат качества на соответствие требованиям стандартов. У нас вы можете купить оптом самую различную продукцию для масштабных производств. Широкий выбор, исчерпывающие консультации наших менеджеров, доступные цены и своевременность поставки определяют лицо нашей компании. При оптовых покупках действует система скидок.

Читать еще:  Какой микроскоп выбрать для пайки микросхем?

ПАЙКА ТИТАНА И ЕГО СПЛАВОВ

Титан и сплавы на его основе обладают высокой активностью к взаимодействию с большинством газов (кислородом, азотом, водородом) и почти со всеми элемен­тами, входящими в состав припоев. Последствием такого взаимодействия является снижение пластических свойств металла и образование на границе припой—титан интерметаллических соединений, охрупчивающих спай.

В связи с высокой активностью титана смачивание его припоями при темпе­ратурах выше 750—800° С обычно не вызывает трудностей. При температурах выше 750—800° С происходит растворение кислорода в титане и своеобразная
самоочистка поверхности. Эти процессы возможны при нагреве в среде нейтраль­ных газов аргона, гелия высокой чистоты или в вакууме.

Одним из способов уменьшения влияния примесей кислорода в нейтральной газовой среде и в вакууме является применение негерметичных защитных экранов (рис. 3), ограничивающих объем газовой среды, способной взаимодействовать с поверхностью детали. При применении защитных экранов кислород в объеме экрана быстро исчерпывается и в процессе дальнейшего нагрева происходит очи­стка поверхности титана. Такой же механизм очистки поверхности наблюдается и в нахлестке соединений. В связи с этим при печном относительно длительном на­греве затекание припоя в зазор и его заполнение происходит достаточно активно, однако поверхности деталей после пайки оказываются темными. При применении за­щитных экранов поверхность деталей после пайки не темнеет и имеет цвет металла в исходном состоянии.

Пайку титана и его сплавов можно про­водить при температурах до 1000е С; при более высоких температурах наблюдается заметный рост зерна основного металла, снижение его прочностных свойств и умень­шение угла изгиба а.

1 — герметичный контейнер; 2 —* защитный экран; 3 — паяемый об­разец; 4 — припой

В табл. 8 приведены механические свой­ства сплава ОТ4 толщиной 1 мм после нагре­ва по режимам пайки и механические свой­ства этого сплава после лужения припоями ПСр 72 и ПСр 85—15 при различных гем — пера турах. Механические свойства сплава ОТ4 при нагреве до температур пайки и по­следующем контакте с припоем заметно сни­жаются. Сказанное позволяет считать, что

основные трудности пайки титана и его сплавов заключаются в защите поверх ности деталей от взаимодействия с газами и предотвращении образования иш терметаллических соединений на границе припой—титан.

В настоящее время наметились определенные направления в решении проб лемы пайки титана.

1. Пайка по барьерным или защитным покрытиям, исключающим взаимодей­ствие титана с припоем.

2. Диффузионная пайка, основанная на использовании тонких покрытий из металлов (например, меди и никеля), образующих в контакте с титаном легкоплав-

8, Изменение механических свойств сплава ОТ4, нагретого по режимам пайки без припоев и с припоями

шческие СВ кге/мм2

* Толщина покрытия 10—15 мкм.

кие эвтектики с последующим рассасыванием их в процессе выдержки при повы­шенных температурах.

3. Применение порошковых припоев на основе гитана с добавками меди, никеля, циркония с ограничением количества жидкой фазы из элементов, раство­ряющихся в титановой основе припоя.

4. Применение серебряных припоев с ограниченным содержанием меди.

В качестве барьерных покрытий при пайке титана используют медные, нике­левые, хромо-никелевые, кобальто-никелевые покрытия.

Пайка по медным и никелевым покрытиям позволяет получить хорошие результаты при ограниченной температуре нагрева под пайку, не превосходящей температуры образования эвтектики в системах Ті—Си, Ті—Ni.

Так, при пайке сплава ОТ4 по медному покрытию припоем ПСрМО 68-27-5 максимальная прочность получена при температурах пайки 790—810° С; при более высоких температурах начинается растворение медного покрытия в титане и прочность соединения снижается [1].

Применение хромоникелевого и кобальто-никелевого покрытий снимает ограничения по температуре, однако прочность соединений определяется проч­ностью на границе припой—покрытие и зависит от качества нанесения покрытии и прочности его сцепления с поверхностью титана.

Диффузионная пайка титана по тонким слоям металлов, нанесенных гальва­ническим способом или термовакуумным напылением, обеспечивает получение высоких прочностных свойств паяных соединений (тср = 40-ь-60 кгс/мм2) [4].

Режимы диффузионной пайки для различных покрытий приведены в табл. 9.

При пайке титана порошковыми припоями системы Ті—Си—Ni—Zr, основу которых составляет титан, получены высокие значения прочности (тср = 40-f — — І-50 кгс/мм2).

В припоях содержится, как правило, до 40—50% титана и циркония, а также медь и никель, образующие легкоплавкие эвтектики с титаном и цирконием. При гаком составе припоев сохраняется температура пайки в интервале 950—

В промышленности нашел применение припой ВПр 16, позволяющий вести пайку при температурах 920—960° С. Прочность соединений, паяных припоем ВПр 16, возрастает с увеличением времени выдержки при температуре пайки.

В соединениях, паянных серебряными припоями, прочностные свойства определяются характером взаимодействия титана с компонентами, входящими в состав припоев, таких, как медь, никель, серебро, цинк и др. [11].

Сопротивление срезу соединений, паянных серебряными припоями, 10— 23 кгс/мм2, а предел выносливости о_х на базе 107 циклов 8—20 кгс/мм2.

Охрупчивание титана под действием расплавленных серебряных припоев и получение низких прочностных свойств обусловлено образованием интерметал­лических соединений типа Ti2Cu, TiAg, Ti2Ni и др. Из многих серебряных припоев

наибольшую прочность при пайке можно получить, применяя серебряные припои с ограниченным содержанием меди.

Припои, содержащие до 28% Си, такие как ПСр 72, ПСр 62, ПСрМО 68-27-5 образуют на границе титан—припой нитерметаллические соединения с концен­трацией меди до 35—40%, что приводит к снижению прочностных свойств паяных соединений. Для сплавов ОТ4-1 и ВТ20 получены тСр = 10—15 кгс/мм2, a_j = = 8-f-lO кгс/мм2.

При пайке припоем ПСр 92 концентрация меди на границе титан—припой остается на уровне 8—10%, что позволяет получить более высокие прочностные свойства паяных соединений (тср = 18-г-22 кгс/мм2, a_j = 15-М8 кгс/мм2).

Результаты измерения твердости и распределения химических элементов по сечению паяных соединений для припоев ПСр 72 и ПСр 92 приведены на рис. 4. Эти же данные подтверждаются японскими учеными, которые считают, что содер­жание меди в серебряных припоях для пайки сплавов титана не должно пре­вышать 10%, а в случаях превышения указанного содержания меди в припое в состав припоя целесообразно вводить никель, образующий с медью твердый раствор и тем самым снижающий концентрацию меди на границе припой—титан.

Пайка титана низкотемпературными припоями затруднена из-за окисной пленки, находящейся на его поверхности. В связи с этим пайку указанными припоями можно проводить в безокислительной среде при температурах выше 750е С или на воздухе по покрытиям при более низких температурах. В качестве покрытий наибольшее распространение получили: никель, наносимый галь­ваническим и химическим способами, и медь, наносимая гальваническим спосо­бом. Возможно горячее лужение титана оловом в ваннах при температурах выше 700—750е С и процесс пайки оловом в вакууме или аргоне при тех же темпера­турах.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector