6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как пользоваться флюсом для пайки алюминия?

Как выбрать флюс для пайки.

Сначала надо разобраться что такое флюс. Флюс это вещество, которое позволяет горячему жидкому припою смачивать места пайки. После остывания припоя образуется пайка. Если это сделать без флюса, то получится холодная пайка, которая может отвалиться сразу или со временем. Все флюсы в горячем состоянии проявляют кислотные свойства. Многие являются кислотами и при обычной температуре, например ортофосфорная кислота, паяльная кислота. Чем выше кислотные свойства во время пайки тем сильнее флюс, качественнее и быстрее будет пайка. Вот список выпускаемых нами флюсов в порядке увеличения их активности. Чем больше номер тем выше активность флюса.

  1. Канифоль
  2. Жидкая канифоль
  3. Флюс паста
  4. Жидкая канифоль LUX
  5. канифоль гель
  6. канифоль гель актив
  7. ЛТИ-120 LUX
  8. ЛТИ-120
  9. Глицерин гидразиновый флюс
  10. ФИМ
  11. Ф-34
  12. Паяльная кислота
  13. Ортофосфорная кислота
  14. Ф-64

А значит ли это, что можно взять самый сильный флюс и спаять всё? Увы нет. Например самый сильный флюс выпускаемый нами это Ф-64 — флюс для алюминия и он имеет соответствующую для этого химию. А вот для пайки меди самой сильной окажется «Ортофосфорная кислота». Но в остальном, если Вам не хватает активности флюса, надо посмотреть на этот список и взять более активный, следующий по номеру. Отрезвит от выбора слишком активного флюса и список безопасности остатков:

  1. Паяльная кислота
  2. Ортофосфорная кислота
  3. Ф-64
  4. Ф-34
  5. ФИМ
  6. Глицерин гидразиновый флюс
  7. ЛТИ-120 Lux
  8. ЛТИ- 120
  9. Жидкая канифоль LUX
  10. Канифоль гель Актив
  11. Канифоль гель
  12. Жидкая канифоль
  13. Флюс паста
  14. Канифоль

Самый высокий номер — самый безопасный флюс. Надо понимать, что выбирая более активный флюс Вы увеличиваете опасность окисления места пайки. Но даже остывающая канифоль может создавать на полированной меди зеленоватый налёт.

Выбор флюса по теме пайки

1. Пайка радиодеталей небольшого размера на печатную плату.

Если все детали залужены то Вам подойдёт Жидкая канифоль или ЛТИ-120. Удалять остатки не требуется, но добейтесь их высыхания т.к. жидкие остатки могут иметь мегоомные сопротивление. Жидкую канифоль может заменить флюс паста, благодаря своей пастообразной форме и не сохнущей основе она имеет некоторые преимущества. Остатки безопасны, но трудны в удалении. Современным средством замены Жидкой канифоли и флюс пасты является Канифоль гель. Обладая всеми преимуществами обоих флюсов он, состоя из видоизменённой канифоли, так же легко удаляется как Жидкая канифоль., при этом обладает более высокой активностью. Гелеобразной заменой ЛТИ-120 является Канифоль гель Актив. По структуре это Канифоль гель а по активности сравним с ЛТИ-120. Канифоль для пайки радиодеталей сегодня применяется уже достаточно редко. Стали широко применяются ЛТИ-120LUX и Жидкая канифоль LUX благодаря их модному свойству абсолютной смываемости водой. К закисшим радиодеталям лучше применить ЛТИ-120 или Канифоль гель актив, а так же новые флюсы ЛТИ-120LUX и Жидкая канифоль LUX.

2. Пайка радиодеталей небольшого размера на печатную плату.

Великолепно справляются с радиодеталями больших размеров канифольные активированные флюсы: ЛТИ-120 или Канифоль гель актив. Так же очень хорошо себя зарекомендовал флюс Глицерин гидразиновый, но после него надо обязательно отчищать места пайки с горячей водой от остатков глицерина. Остатки Глицерин гидразинового флюса не окисляют пайку и для деталей не связанных с электроникой деталей остатки допустимы, но на печатной плате возможны остаточные мега омные сопротивления.

3. Железо, медь, латунь. Детали небольшого размера.

Когда детали малы и к кислотным флюсам можно не прибегать берут Глицерин гидразиновый флюс или ЛТИ-120. Содержащие воду ЛТИ-120LUX и Жидкая канифоль LUX так же могут справиться с этой задачей. Частенько и флюс паста помогает. Иногда важнее не активность флюса а сколько времени он не испарится при температуре пайки, так как деталь ещё прогреть надо а за это время активный, но быстроиспаряющийся флюс испарится. Тут и пригождается флюсы на водной основе, такие как ЛТИ-120LUX и Жидкая канифоль LUX, Глицерин гидразиновый. Кроме того не сохнущие флюсы Канифоль гель Актив и флюс паста по той же причине что и водные могут весьма полезны. В отличии от водных флюсов они не шипят а красиво плавятся.

4. Железо медь латунь, оцинкованное железо. Массивные детали.

В таких случаях берут кислотные флюсы: Паяльную кислоту, Фим, Ортофосфорную кислоту. Кислотные флюсы начинают работать моментально и создаётся впечатление, что деталь нужно меньше греть. Это иллюзия, но она отражает насколько легче поддаются детали пайке при использовании кислотных флюсов. По активности Ортофосфорная кислота и Паяльная кислота более менее похожи. Флюс ФИМ обладает меньшей активностью. Различаются они по своим остаткам после пайки, а для таких активных кислотных флюсов это очень важно. Раньше всех начинают взаимодействовать с металлами остатки Ортофосфорной кислоты. Это тёмнно-серые налёты фосфатов. Но эти остатки достаточно стабильны и создают прочную фосфатную плёнку защищающую металл от окисления. Достаточно сказать что этой кислотой в автомастерских пользуются вместо ненадёжного в гаражных условиях цинкования. Фосфатные покрытия, получаемые таким образом, надёжно защищают железо от ржавчины. Чуть дольше проявляет себя Cl паяльной кислоты. Остатки это хлориды металла которые образуют некрасивые окислы. Если это железо, применяемое на открытом воздухе, то это может стать катализатором очага ржавчины. И на конец флюс ФИМ. Остатки его, в виду малого содержания ортофосфорной кислоты, мало корродийны, поэтому он хорошо подходит для чистых но активных паек. Вопрос который очень часто встаёт у людей паяющих активными флюсами: Что делать когда Вы паяете изделие и последний шов закрывает ёмкость? Часть флюса останется внутри и удалить его уже не получится. Ответ на этот вопрос был найден в советское время при запайке герметичных корпусов инфракрасных приборов для спутников. Последний шов выполнялся исключительно ортофосфорной кислотой. Количество подбиралось ровно столько, сколько необходимо для пайки. Флюс наносился заострённой размоченной в кислоте деревянной палочкой. Достаточность флюса определялась тем насколько разбрызгивается флюс. Проводились контрольные вскрытие после климатических испытаний. На внутренней стороне пайки, где удаление по причине не доступности не могло проводиться, остатки флюса образовывали стойкие фосфатные плёнки которые ни на что не влияли.

Из всего что я сказал понятно, удалять остатки надо. И если в случае с ортофосфорной кислотой удалять остатки необходимо из эстетических соображений, то в случае с паяльной кислотой это предотвратит дальнейшие неприятности. Как удалять остатки кислот? Идеально смыванием в большом количестве воды с кисточкой. Лучше после этого использовать средство Удалитель флюса, нейтрализующее кислотность остатков кислотных флюсов. Так же широко используется протирание влажной тряпочкой. Обычно двух трёх движений хватает. Но надо протирать ни как крошки со стола смахивают а с небольшим усилием, что бы пайка заблестела. Удаление канифольных флюсов лучше проводить «Растворителем канифоли», но можно использовать большинство растворителей продающихся в хозтоварах или спирт.

Существует множество «способов» как спаять алюминий. К примеру натереть под каким ни будь канифольным флюсом жалом паяльника и может быть припой в каком то месте пристанет к алюминию. Всё это больше похоже на добывания огня с помощью трута. Сегодня все пользуются зажигалками. И для пайки алюминия есть современный флюс Ф-64, который легко паяет алюминий просто как канифольный флюс паяет печатную плату. Но не увлекайтесь — паяя много включите вентиляцию. На абсолютно другой химии сделан флюс Ф-34. Он гораздо менее активный, но и во много раз более безопасен. Оба относятся к флюсам остатки которых требуют удаления.

Таблица сравнения флюсов.

печ. платы и маленькие радио детали

печ. платы и большие радио детали

Железо, медь, латунь, никел. железо.
Детали не большого размера

Железо, медь, латунь, никель, оцинкованное железо.
Детали большого размера

Народные советы по пайке алюминия

Проблемы, связанные с пайкой алюминия объясняются тем, что поверхность этого металла покрыта тонкой, эластичной и весьма прочной пленкой окисла – Al2O3. Удалить ее механическими методами не удается, т.к. при соприкосновении чистой поверхности алюминия с воздухом или водой, он моментально опять покрывается пленкой окисла. Обычные флюсы не растворяют окись.

Для механической очистки от окисла рекомендуют зачищать поверхность под пленкой масла, но в этом случае масло должно быть совершенно обезвожено, для чего его надо в течение некоторого времени прогреть при температуре 150-200°C.

Рекомендуется применять минеральные масла, лучше вакуумные ВМ-1, ВМ-4.

Есть советы применять для этой цели ружейное щелочное масло, на сколько оно эффективно, трудно сказать, т.к. вероятно, если масло содержит щелочь, то и воду тоже. Существуют паяльники, у которых на жале укреплен для зачистки стальной скребок.

Предлагается также зачистка поверхности с помощью грубых железных опилок, которые растираются по поверхности под слоем масла или канифоли жалом паяльника совместно с припоем, опилки здесь выполняют роль абразива, одновременно происходит облуживание, я пробовал этот способ, соединение получается непрочное, по-видимому вследствие точечного облуживания алюминия.

Вероятно, более надежную пайку можно получить, облуживая алюминий по подслою меди, нанесенному на поверхность алюминия электролитически. Возможно, для тех же целей может служить и подслой цинка, нанесенного также, как в рецепте по хромированию алюминия. Более надежно пленка окисла удаляется при помощи специальных активных флюсов.

Хорошо также сочетать механическую обработку поверхности с применением активных флюсов.

Ниже приведенны рецепты некоторых флюсов.

1. Олеиновая к-та 20 г. Йодистый литий (LiI) 2-3 г. ж. Химия и Жизнь, 11/1988, стр. 78

2. Хлористый цинк (ZnCl2) 85 % 90 % 95 % Хлористый аммоний (NH4Cl) 10 % 8 % – Фтористый натрий (NaF) 5 % 2 % 5 %

3. Хлористый натрий (NaCl) 6,5 % Сернокислый натрий (Na2SO4) 4 % Хлористый литий (LiCl) 23,5 % Хлористый калий (KCl) 56 % Криолит (Na3AlF6) 10 %

4. Флюс Ф59А Кадмий борфторид (Cd[BF4]2) 10 % Цинк борфторид (Zn[BF4]2) 3 % Аммоний борфтрид (NH4BF4) 5 % Триэтаноламин 82 %

Читать еще:  Технология пайки полипропилена

5. Натрий фтористый (NaF) 10 % Цинк хлористый (ZnCl2) 3 % Литий хлористый (LiCl) 5 % Калий хлористый (KCl) 82 %

6. . К известным методам пайки алюминия я предлагаю добавить еще один, очень простой. Зачищенное и обезжиренное место пайки покрывают с помощью паяльника тонким слоем канифоли, а затем сразу же натирают таблеткой анальгина (бенальгина). После этого облуживают поверхность припоем ПОС-50 (или близким к нему), прижимая к ней с небольшим усилием жало слегка перегретого паяльника. С облуженного места ацетоном смывают остатки флюса, еще раз осторожно прогревают и снова смывают флюс. Спаивание деталей производят обычным образом.

А. ГЛОТОВ с. Галиевка Воронежской обл. (Радио 5-86, с.37)

7. Отрывок из книги о спайке алюминиевых проводов с медными способом погружения в ванну с припоем. Ниже приводится описание операций по выполнению соединений.

С концов катушек из алюминиевого провода удаляют эмалевую изоляцию на длине 60-70 мм, с концов медных проводов удаляют оплетку и резиновую изоляцию на длине 35-40 мм, оголенные жилы зачищают до блеска.

Удаление эмали с проводов диаметром до 1 мм выполняют ножом, с проводов диаметром свыше 1мм — металлическими щетками, вращающимися навстречу друг другу. Эти щетки диаметром 250-300 мм набирают из стальных проволок диаметром 0,08-0,1 мм, выступающих из оправки на длину 50-60 мм; вращение каждой щетки производится от электродвигателя мощностью 0,6 квт с частотой вращения 3 000 об/мин. Окончательную зачистку производят стеклянной шлифовальной шкуркой.

Зачищенные концы тщательно протирают бязевым тампоном, смоченным ацетоном или бензином. Перерыв между зачисткой и лужением или сваркой не должен превышать 2-3 ч.

Лужению подвергают все зачищенные концы проводов, за исключением свариваемых контактным нагревом. Концы алюминиевых катушек окунают в ванну с флюсом Ф59А, а концы медных проводов (выводов) — с флюсом КСп. Затем концы погружают в ванну с расплавленным припоем П250А с температурой 310-320 °С или П300А с температурой 370-380 °С на 3-10 сек до прекращения пара и дыма.

Облуженные концы стряхивают для удаления излишков припоя, не позже чем через 1-1,5 ч очищают волосяной щеткой от остатков флюса Ф59А, промывают сначала в горячей проточной воде, затем в холодной проточной воде и протирают насухо чистым бязевым тампоном. Остатки флюса КCп после лужения не удаляют. Лучше всего паять алюминий с помощью специального ультрозвукового паяльника.

Пайка алюминия паяльником и газовой горелкой

Существует распространенное убеждение, согласно которому невозможно паять или лудить алюминий (а также сплавы на его основе) не имея для этого спецоборудования.

В качестве аргумента приводится два фактора:

  1. при контакте с воздухом на поверхности алюминиевой детали образуется химически стойкая и тугоплавкая оксидная пленка (AL2O3), в результате чего создается препятствие для процесса лужения;
  2. процесс пайки существенно осложняется тем, что алюминий расплавляется при температуре 660°С (для сплавов это диапазон в пределах от 500 до 640°С). Помимо этого металл теряет прочность, когда в процессе нагрева его температура поднимается до 300°С (у сплавов до 250°С), что может вызвать нарушение устойчивости алюминиевых конструкций.

Учитывая приведенные выше факторы, осуществить пайку алюминия обычными средствами действительно невозможно. Решить проблему поможет применение сильнодействующих флюсов, в сочетании с использованием специальных припоев. Рассмотрим подробно эти материалы.

Припой

Обычно в качестве основы легкоплавкого припоя используются: олово (Sn), свинец (Pb), кадмий (Cd), висмут (Bi) и цинк (Zn). Проблема в том, что алюминий в этих металлах практически не растворяется (за исключением цинка), что делает соединение ненадежным.

Применив флюс с высокой активностью и проведя должным образом обработку мест соединения, можно использовать припой на оловянно-свинцовой основе, но лучше отказаться о такого решения. Тем более, что паянное соединение на основе системы Sn-Pb обладает низкой устойчивостью к коррозии. Нанесение лакокрасочного покрытия на место пайки позволяет избавится от этого недостатка.

Для пайки алюминиевых деталей желательно использовать припой на основе кремния, меди, алюминия, серебра или цинка. Например 34A, который состоит из алюминия (66%), меди (28%) и кремния (6%), или более распространенный ЦОП-40 (Sn – 60%, Zn – 40%).

Припой отечественного производства – ЦОП-40

Заметим, что чем больше процентное содержание цинка в составе припоя, тем прочнее будет соединение и выше его устойчивость к коррозии.

Высокотемпературным считается припой, состоящий из таких металлов, как медь, кремний и алюминий. Например, как упомянутый выше отечественный припой 34A, или его зарубежный аналог «Aluminium-13» , в котором содержится 87% алюминия и 13% кремния, что позволяет осуществлять пайку при температуре от 590 до 600°С.

«Aluminium-13» производства компании Chemet

При выборе флюса необходимо учитывать, что не каждый из них может быть активным к алюминию. Мы можем порекомендовать использовать в таких целях продукцию отечественного производителя – Ф-59А, Ф-61А, Ф-64, они состоят из фторборатов аммония с добавлением триэтаноламина. Как правило, на пузырьке есть пометка – «для алюминия» или «для пайки алюминия».

Флюс отечественного производства

Для высокотемпературной пайки следует приобрести флюс, выпускаемы под маркой 34А. Он состоит из хлористого калия (50%), хлорида лития (32%), фторида натрия (10%) и хлористого цинка (8%). Такой состав наиболее оптимален, если производится высокотемпературная пайка.

Рекомендуемый флюс для паки при высокой температуре

Подготовка поверхности

Прежде чем начинать лужение, необходимо выполнить следующие действия:

  • обезжирить поверхность при помощи ацетона, бензина или любого другого растворителя;
  • удалить оксидную пленку с места, где будет производится пайка. Для зачистки используется наждачная бумага, абразивный круг или щетка с щетиной из стальной проволоки. В качестве альтернативы можно применить травление, но эта процедура не так сильно распространена в силу своей специфичности.

Следует учитывать, что полностью оксидную пленку удалить не получится, поскольку на очищенном месте моментально появляется новое образование. Поэтому зачистка производится не с целью полного удаления пленки, а для уменьшения ее толщины, чтобы упростить флюсу задачу.

Нагрев места пайки

Для пайки небольших деталей можно воспользоваться паяльником мощностью не менее 100Вт. Массивные предметы потребуют более мощного нагревательного инструмента.

Паяльник мощностью 300 Вт

Наиболее оптимальный вариант для нагрева — использование газовой горелки или паяльной лампы.

Простая газовая горелка

При использования горелки в качестве нагревательного инструмента следует учесть следующие нюансы:

  • нельзя перегревать основной металл, поскольку он может расплавиться. Поэтому в процессе необходимо регулярно контролировать температуру. Делать это можно, касаясь припоем нагреваемого элемента. Расплавление припоя даст знать, что достигнута необходимая температура;
  • не следует использовать кислород для обогащения газовой смеси, поскольку он способствует сильному окислению металлической поверхности.

Инструкция по пайке

Процесс пайки алюминиевых деталей не имеет своих отличительных особенностей, он осуществляется также как со сталью или медью.

Алгоритм действий следующий:

  • обезжиривается и зачищается место пайки;
  • производится фиксация деталей в нужном положении;
  • нагревается место соединения;
  • прикасаются стержнем припоя (содержащим активный флюс) к месту соединения. Если используется безфлюсовый припой, то для разрушения пленки оксида наносится флюс, после чего трут твердым куском припоя по месту пайки.

Для разрушения пленки оксида алюминия также используется щетка со щетиной из стальной проволоки. При помощи этого простого инструмента производят растирание расплавленного припоя по алюминиевой поверхности.

Пайка алюминия — полная видео инструкция
https://www.youtube.com/watch?v=ESFInizLE9U

Что делать при отсутствии нужных материалов?

Когда нет возможности подготовить все необходимые для пайки материалы, можно использовать альтернативный способ, при котором применяется припой на оловянной или оловянно-свинцовой основе. Что касается флюса, то он заменяется канифолью. Чтобы не образовывалась новая пленка оксида алюминия на месте старой, зачистка производится под слоем расплавленной канифоли.

Паяльник, помимо своего прямого назначения, будет использоваться как инструмент, разрушающий оксидную пленку. Для этого на его жало надевается специальный скребок. Увеличить результативность процесса можно, добавив в канифоль металлических опилок.

Процесс производится следующим образом:

  • нагретым луженым паяльником расплавляют канифоль в месте пайки;
  • когда канифоль полностью покрывает поверхность, начинают тереть об нее жалом паяльника. В результате этого металлические опилки и жало разрушают пленку оксида алюминия. Поскольку слой расплавленной канифоли не позволяет проникать воздуху к алюминиевой поверхности, на ней не образовывается оксидная пленка. По мере того, как производится разрушение пленки, будет происходить лужение детали;
  • когда процесс лужения завершен, детали соединяют и прогревают, пока не будет достигнута температура плавления припоя.

Необходимо предупредить, что процесс пайки алюминия без специальных материалов — довольно хлопотный процесс без гарантии успешного завершения. Поэтому лучше не тратить на такую работу свои силы и время, тем более, что качество и надежность такого соединения будут сомнительными.

Гораздо проще купить активный флюс и высокотемпературный припой, при помощи которых пайка алюминия даже в домашних условиях не вызовет затруднений.

Pereosnastka.ru

Обработка дерева и металла

Алюминий и его сплавы очень быстро окисляются в процессе нагревания, образуя весьма стойкие окислы, затрудняющие ведение пайки. Поэтому процесс пайки алюминия и его сплавов во многом отличается от процессов пайки других металлов. Здесь применимы лишь те методы, при которых пленка окислов, покрывающая поверхность спаиваемых частей, разрушается непосредственно в момент пайки.

Известны три метода пайки алюминия и алюминиевых сплавов:
1) пайка с механическим разрушением окисной пленки;
2) пайка с разрушением пленки окислов при помощи ультразвуковых колебаний;
3) пайка с химическим разрушением окисной пленки.

Для получения доброкачественного соединения паяемых частей необходимо прежде всего произвести подготовку поверхности: очистку от грязи, обезжиривание и травление.

Метод пайки алюминия с механическим разрушением окисной пленки. Этот метод нельзя считать прогрессивным, тем не менее он все же часто встречается в практике работы слесаря.

Подготовленные для пайки поверхности нагревают до температуры плавления припоя, затем в зоне шва наносят слой расплавленного припоя и под ним шабером^ паяльником или стальной щеткой удаляют поверхностную пленку (производят облуживание). По мере удаления окисной пленки припой смачивает алюминий и после охлаждения дает прочную связь.

Читать еще:  Какой паяльник выбрать для пайки проводов?

В ряде случаев окисную пленку соскабливают непосредственно палочкой припоя, в которую иногда вводят абразив. Такой способ паяния часто называют шабер-ным, или абразивным.

Метод пайки с механическим удалением окисной пленки наиболее удобен для запайки поверхностных дефектов в алюминиевых изделиях. В качестве припоя для этой цели применяют цинк, олово и их сплавы.

Для ускорения процесса пайки по этому методу используют электрический паяльник, при помощи которого окисная пленка удаляется -механически — вибрирующей металлической щеткой.

Метод пайки алюминия с применением ультразвуковых паяльников. Окисную пленку с поверхности алюминия можно успешно удалять с помощью ультразвука. Вызываемые тем или иным способом в расплавленном припое колебания ультразвуковой частоты приводят к нарушению сплошности в слое припоя и периодическому возникновению и исчезновению огромного количества мелких пузырьков. В тот момент, когда пузырек, возникающий непосредственно на поверхности алюминия, исчезнет, расплавленный припой с силой ударяется об эту поверхность и разрушает окисную пленку; освободившаяся от окислов “поверхность алюминия немедленно смачивается расплавленным припоем, что и обеспечивает доброкачественную пайку. При этом способе пайки не обязательно применять флюсы. При использовании ультразвуковых паяльников (см. рис. 180, а) отпадает необходимость в предварительной зачистке поверхности алюминия перед пайкой. Обезжиривать поверхности необходимо.

При пайке алюминия с применением ультразвука обычно используют л«гкоплавкие припои на цинковой или оловянной основе с цинком, кадмием и алюминием. В процессе пайки необходимо держать конец рабочего стержня паяльника как можно ближе к поверхности алюминия, но по возможности не касаться ее. При залу-живании поверхности алюминия на поверхности припоя скапливаются мелкораздробленные частицы разрушенной окисной пленки. Для получения в этом случае доброкачественного паяного соединения желательно зашлакованный слой припоя удалить с поверхности чистой тканью, а затем произвести пайку свежим припоем.

Применение ультразвуковых колебаний при пайке алюминия особенно целесообразно в электро- и радиотехнической промышленности, где нежелательно пользоваться коррозийноактивными флюсами.

Метод пайки алюминия с химическим разрушением окисной пленки. Этот метод пайки осуществляется при нагреве с помощью горелок, в печах и другими способами. При пайке изделий из алюминия припоями на алюминиевой основе вначале горелкой подогревают место спая и пруток припоя до температуры 300—400 °С. Затем конец прутка припоя окунают в сухой порошкообразный флюс типа 34А, а место спая дополнительно подогревают так, чтобы температура его была примерно на 50° выше температуры плавления припоя. Быстро и с нажимом проводят припоем по непрерывно подогреваемому месту спая. При этом имеющийся на прутке припоя флюс растекается по поверхности алюминия и растворяет окисную пленку, а припой, расплавляясь при соприкосновении с изделием, заполняет очищенный флюсом паяемый шов. После пайки изделие должно быть тщательно промыто для удаления остатка флюса, чтобы предохранить спаянную поверхность от коррозии.

Пайка алюминия и его сплавов представляет большие затруднения вследствие легкой окисляемости алюминия с образованием прочной окисной пленки, а также вследствие часто наблюдающейся слабой сопротивляемости коррозии мест пайки.

Самый простой способ пайки алюминия — пайка трением. Металл подогревают до температуры плавления припоя; на поверхность металла наносят припой, который растирают проволочной щеткой или шабером. При натирании соскабливается пленка окисла и припой прочно соединяется с зачищенной поверхностью металла. Слой припоя предохраняет зачищенную поверхность от соприкосновения с воздухом. Облуженные поверхности сжимают и паяют при нагревании. Разновидностями пайки натиранием являются абразивная и ультразвуковая пайка. Абразивную пайку производят стержнем из измельченного асбеста с порошком припоя. При натирании нагретого металла асбест зачищает поверхность металла, а припой облуживает ее. Паяльный абразивный стержень закреплен в специальном паяльнике с электрическим нагревом.

Ультразвуковую пайку осуществляют ультразвуковым паяльником, в котором встроен магнитострикционный вибратор, сообщающий ультразвуковые колебания рабочей части паяльника. Паяльник наносит припой на поверхность металла, разрушает колебаниями слой окисла, и припой облуживает металл. Паяльник питается током от высокочастотного лампового генератора. Припоями для пайки трением служат технически чистый цинк или сплавы цинка, например 15—20% Sn, остальное цинк. Иногда при пайке трением применяют покровные флюсы из органических веществ — канифоль, стеарин и т. п. Пайка трением может дать удовлетворительную прочность, около 9 кГ/мм2, но соединение подвержено коррозии и под влиянием атмосферы, особенно влажной, быстро разрушается. Это объясняется большой разницей электрохимических потенциалов алюминия и цинка. Получить действительно прочные соединения можно лишь пользуясь припоями на основе алюминия; некоторые составы их приведены в табл. 19.

Лучшим из этих припоев считают 34А, представляющий собой сплав алюминия с медью и кремнием. Пайку ведут с нагревом газовой горелкой или в соляных ванных. Для пайки этими припоями нужны специальные флюсы (табл. 20).

Для пайки алюминия лучшим считается флюс 34А, применяемый совместно с припоем 34А. Флюс наносят на металл вместе с припоем, он быстро очищает металл, растворяя окислы, и припой легко растекается по очищенной поверхности, образуя прочное соединение с пределом прочности 15—18 кГ/мм2, стойкое против коррозии.

Флюсы для низкотемпературной пайки алюминия и его сплавов

Алифатические кислоты, аминикислоты

Состав флюсов для высокотемпературной пайки приведены в соответствующем разделе.
В таблице приведены состав, температурные интервалы активности и назначение некоторых флюсов, разработанных с 1973 по 1984 г. Среди органических кислот и других веществ, пригодных в качестве активатора флюсов для пайки алюминия и его сплавов при температуре Al2O3 протекают следующие реакции:

Наиболее энергично протекает реакция с муравьиной и уксусной кислотами, менее энергично с капроновой кислотой. Однако введение этих кислот во флюсы мало перспективно вследствие их интенсивного выкипания при температуре пайки и снижения энергии разрыва связи СОО—НС — с возрастанием молекулярной массы кислоты. Соли карбоновых кислот, получаемые по реакциям (1) и (2), термически неустойчивы. Например, уксуснокислый алюминий разлагается при температуре 200°С.

Среди двуосновных предельных кислот, более сильных, чем одноосновные, первые три члена гомологического ряда кислот (щавелевая, малоновая, янтарная) не обладают активностью при пайке алюминия, что обусловлено декарбоксилированием их при нагреве. Высшие кислоты имеют во флюсах такую же активность, как и одноосновные кислоты, с тем же числом атомов в радикале.

Ангидриды кислот не активны при пайке. Более высокую активность во флюсах для пайки алюминия имеют галогензамещенные кислоты, что объясняется одновременным воздействием на оксид алюминия как карбоксильной группы, так и атома галогена.

Обнаружено, что активны во флюсах некоторые твердые аминокислоты: α-аминопропионовая и фениланитрониловая, которые обеспечивают хорошее растекание припоя.

С учетом физических свойств, степени токсичности и активности во флюсах среди органических кислот наиболее пригодными можно считать высшие жидкие незамещенные кислоты, их твердые аналоги и аминокислоты. Флюсующая способность смесей кислот в любых соотношениях не превышает активности компонента с наиболее высокой молекулярной массой.

Салициламид и мочевина по активности равноценны действию капроновой или элаидиновой кислоты.

Добавка солей в кислотные растворы

Активность аммонийных солей органических кислот близка к активности исходных одно- и двуосновных кислот. Эти соли имеют преимущества перед амидами — меньшую летучесть при пайке и лучшую растворимость в кислотах. Характерно, что введение органических кислот и их производных в триэтаноламин не повышает его активности при флюсовании алюминиевых сплавов.

Дальнейшее повышение флюсующей активности кислотных органических растворов достигается при добавке в них галлоидных солей аминов или металлов. Введение в дециловый спирт (температура кипения 231°С) LiI и SnCb или в капроновую кислоту (температура кипения 205°С) LiBr, LiI, NaI, SnCb в виде кристаллогидратов активирует раствор.

Введение в кислотные флюсующие растворы солей 95 %-ного этилового спирта дезактивирует их из-за вытеснения воды по реакции:

Однако присутствие кристаллизационной воды в спиртовом растворе хлорида олова не влияет на активность его при пайке

Реактивные органические флюсы

Для пайки алюминия легкоплавкими припоями были предложены реактивные органические флюсы. Основой этих флюсов является органический аминоспирт триэтаноламин, а активаторами фторбораты тяжелых металлов и аммония. В местах контакта фторборатов с алюминием через несплошности в оксидной пленке Al2O3 высаживаются металлы: кадмий и цинк. Остатки триэтаноламина в процессе нагрева переходят в инертное вещество смолообразного вида, не вызывающее коррозии паяных соединений. Эти флюсы и их остатки после пайки имеют рН = 8, что также подтверждает их некоррозионно-активность. Все эти флюсы не отличаются по коррозионной активности при пайке алюминия, но при пайке его со сплавом АМц, медью и ее сплавами наиболее эффективным является флюс Ф59А. Температурный интервал активности этих флюсов 150—300°С. Флюсы этого типа непригодны для пайки в нахлестку с укладкой припоя у зазора деформируемых сплавов АМг, Д1, Д16, В95 и литейных алюминиевых сплавов. Ими можно пользоваться только при облуживании паяемой поверхности алюминия с последующей пайкой, например с флюсом ЛТИ-120 . При этом температура между паяемыми деталями при пайке не должна отличаться более чем на 10°С. Остатки флюсов легко смываются водой или протираются влажной салфеткой, смоченной водой или этиловым спиртом, и не вызывают сколько-нибудь заметной коррозии в течение более 1000 ч. Исследования показали, что по сравнению с флюсами, содержащими в качестве растворителя уксусную, капроновую, олеиновую, лауриновую кислоты, а в качестве активатора хлорид висмута, флюс Ф54А обеспечивает большую площадь растекания припоя П250А по алюминию АД1; но он менее активен при пайке коррозионностойкой стали, латуни и меди, чем флюсы, содержащие хлорид висмута.
Флюсы Ф54А, Ф59А и Ф61А пригодны для пайки в указанном интервале температур припоями П200А, П250А, П300А, П170А и П150А. Для этого используют терморегулирующие электропаяльники, индукционный нагрев, а также пайку погружением в расплавленный припой. Недопустима пайка с этими флюсами при нагреве открытым пламенем из-за возможности их сгорания. При температуре выше 350 °С в паяных швах соприкасающихся соединений, выполненных этими флюсами, образуются непропаи. При быстром нагреве (электроконтактным, индукционным способами) в среде чистого аргона пайка с этими флюсами возможна при температуре 320°С.
Есть данные о применении для пайки алюминиевых сплавов легкоплавкого припоя Sn — (8—15)% Zn— (2—5)% Pb с температурой плавления 190°С с флюсом в виде раствора борно-фтористого и фтористого аммония в моноэтаноламине. Во флюсах для низкотемпературной пайки алюминия и его сплавов вместо канифоли предложено использовать пентаэритрит бензоата, который более термостоек, чем канифоль, а остатки его некоррозионно-активны и в виде эластичной пленки предохраняют паяные швы от окисления. В качестве активатора флюса используют карбоновые кислоты. Паяные соединения (припой П250) не разрушаются в солевом растворе в течение 200 суток. Припой из проволоки (Sn—Pb—Ag) с сердцевиной из указанного флюса пригоден для пайки всех алюминиевых материалов, в которых содержится менее 3% Mg и 3% Si.

Читать еще:  Паста для пайки медных проводов

Пайка алюминия и других материалов: флюсы и припои для пайки

Пайка очень часто используется как способ надежного соединения двух твердых материалов, в частности, металлов. Она широко распространена как в промышленных, так и бытовых масштабах. А чтобы пайка была выполнена качественно, нужно иметь хорошее оборудование, инструменты, а также расходные материалы, такие как флюс и припой.

Причем флюс и припой необходимо выбирать в зависимости от материала, который вы планируете паять. Например, флюс для пайки алюминия будет отличаться от того, который используется для соединения элементов из меди или серебра. О выборе флюсов и припоев для некоторых видов металла и особенностях их пайки мы и расскажем ниже.

Выбор флюса для серебряных изделий

Для соединения серебряных частей нужно выбирать флюс для пайки такой, чтобы он смог не допустить появления оксидной пленки и мог обезжирить паяльную зону. Пайка серебра выполняется очень просто: прогрейте поверхность металла до получения защитной пленки с помощью газовой горелки.

Флюс для серебра имеет такие характеристики:

  • соединение максимально крепкое;
  • отсутствие горючести;
  • рабочая температура колеблется в пределах от 520 до 820 градусов.

Флюс для латуни

Для пайки латуни можно выбирать как специальный флюс под этот материал, так и универсальный, который можно применять для соединения таких металлов, как:

  • алюминий;
  • бронза;
  • медь;
  • оцинкованное железо;
  • коррозийно-стойкие сплавы.

Перед применением материала его следует взболтать.

Как подобрать флюс для нержавейки

В качестве флюса для нержавейки в основном выступает ортофосфорная кислота, которая имеет неорганическое происхождение и является веществом средней силы. Для нержавеющей стали используют кислоту в виде бесцветных гигроскопических кристаллов.

Когда кислота достигает температуру 213 градусов, она становится пирофосфорной. Такую кислоту можно применять для соединения нержавейки, и она отлично растворяется в воде. Фосфорная кислота при пайке нержавейки на 85 процентов должна содержать водный раствор. Также кислоту можно растворять не только в воде, но также и в этаноле и прочих растворителях.

Флюс для нержавейки в виде кислот используется для следующих целей:

  • очистка от ржавчины;
  • избавление от грязи;
  • нанесение на поверхность пленку для защиты от окисления и коррозии.

Флюс наносят на сталь тонким слоем, а это обеспечивает качественное соединение деталей из нержавеющей стали.

Пайка алюминия самостоятельно

Пайка алюминия в домашних условиях – процесс крайне сложный. Дело в том, что после зачистки поверхность металла обрастает оксидной пленкой, которая усложняет процесс работы. Однако если при пайке ее разрушить, все не будет так сложно.

Механическим способом удалить эту пленку не получится, поскольку если поверхность алюминия соприкоснется с водой или кислородом, она станет еще больше, а флюсы окислы не растворяют.

Что избавить поверхность от окисла, зачистите металл под масляной пленкой, при этом масло должно быть целиком обезвоженным. С этой целью его предварительно прогревают в течение какого-то времени при температуре до 200 градусов. Масло лучше брать минеральное или вакуумное.

Также поверхность можно зачищать грубыми железными опилками, которые следует растереть по ней под слоем канифоли или масла. Для этого берут жало паяльника и припой. Опилки в данном случае выступают абразивом, и вместе с чисткой происходит процесс обслуживания. Чтобы пайка алюминия была более надежной, металл следует обрабатывать по медному подслою, нанесенному на поверхность электролитическим способом.

Прослой может быть и цинковым, а пленку окисла можно надежно удалить специальными активными флюсами. Очень эффективно будет удаление с помощью активного флюса и механической обработки.

Флюсы для пайки алюминия

Выбирать флюс для алюминия нужно в зависимости от ряда факторов. Например, «бинарный» флюс в виде концентрированной фосфорной кислоты. Безотмывочный флюс не требует после пайки дополнительной промывки, также с его помощью можно производить пайку не только алюминия, но и меди и прочих металлов.

Припои для пайки алюминия

Чтобы запаять алюминий с помощью припоя, нужно покрыть поверхность металла его слоем. А детали паяются после облужения припоем. Залуженные таким образом алюминиевые детали можно не только паять друг с другом, но и с другими материалами или сплавами.

Для пайки алюминия лучше всего подходят легкоплавкие припои, в основе которых содержатся:

  • цинк;
  • олово;
  • кадмий.

Также используются и алюминиевые тугоплавкие припои, но они не такие удобные в плане свойств. Но тугоплавкие более надежные и обеспечивают более прочное соединение. Тугоплавкие припои включают в себя:

  • медь;
  • цинк;
  • кремний.

Наиболее простой припой – это сплав кремний и алюминия. Пайка происходит при помощи простого паяльника, жало которого нужно прогреть до 350 градусов, а также флюса в виде смеси йодида лития и олеиновой кислоты.

Пайка алюминиевых сплавов

С помощью припоев и флюсов определенного вида можно паять не только алюминиевые детали, но и изделия на основе сплавов алюминия. Наиболее легкие в плане пайки такие сплавы, как:

  • Авиаль;
  • АМц.

А наиболее сложные – это:

  • В95;
  • АК4;
  • дуралюмин;
  • литейные сплав с минимальной температурой плавки.

Использовать припой типа 34А для перечисленных сплавов можно только для создания мелких изделий и с максимальной осторожностью, поскольку высок риск пережога и расплавления металла.

Поскольку пайка сильно нагревает сплав, дуралюмин и некоторые другие его виды, переходят в отожженное состояние, а потери при этом имеются не менее 30 процентов прочности в паяльной области. А при пережоге прочность теряется более чем наполовину.

Учитывайте при нагревании риски коробления материала, поэтому нельзя допускать пайку крупных деталей из сплавов посредством горелки. А мелкие изделия на основе дуралюмина лучше всего изготавливать печным методом, где можно точно производить регулировку температуры.

А чтобы снять устойчивые окислы со сплавов, нужно брать особо активные флюсы. Чаще всего для этой цели используют флюсы на основе алюминия. Однако некоторые из них, в частности, 34А, могут спровоцировать коррозию, именно поэтому после пайки нужно удалить то, что останется от флюса.

Особенности пайки меди и применение припоев

Отремонтировать те же медные трубы можно своими руками, да и в плане характеристик медные трубы более прочные и надежные, чем пластиковые. Естественно, они стоят дороже, но эта дороговизна вполне оправдана.

А можно сделать водопровод на основе медных труб своими руками, для этого нужно обладать нужными навыками и умениями, а также иметь на руках все необходимые материалы, приспособления и инструментарий. И конечно же, нужно обязательно знать, как правильно паять медь, и какие для этого потребуются припои и флюсы.

Для пайки медных труб вам потребуется следующее:

  • кисточка для нанесения на поверхность трубы флюса в виде пасты;
  • стальные щетки для зачистки стенок труб изнутри;
  • припой из олова;
  • резак для труб;
  • горелка газовая для обработки материала.

Если говорить о газовых горелках для пайки меди, то они могут иметь в наличии пьезовый розжиг, а могут быть и без него. Чтобы качественно соединить друг с другом медные трубы, соблюдайте такой порядок действий:

  • в самом начале зачищаем поверхность медной трубы изнутри специальной щеточкой. Затем при помощи специальной шкурки следует почистить трубу снаружи, пока не появится блестящий медный оттенок поверхности;
  • кисточкой нанесите флюс на поверхность соединения двух отрезков снаружи и внутри, а затем вставьте их друг в друга;
  • разжигаем газовую горелку и разогрейте места соединения труб. Смотрите, чтобы появились оловянные шарики;
  • теперь возьмите оловянные припои в небольшом количестве и нанесите их по краям соединения двух частей. При этом нет необходимости, чтобы они проводились по всему периметру края труб, будет достаточно нанести их примерно на половину периметра края труб. Оловянные припои отлично соединяются с металлами при пайке. В течение нескольких секунд припои на основе свинца и олова будут воздействовать на поверхность меди, обеспечивая прочность соединения.

Какие припои берут для меди?

Чаще всего для соединения меди используют медно-фосфорные припои, в состав которых также входит и серебро примерно на 15 процентов. В основном их используют в холодильной промышленности, поскольку они отличаются относительно невысокой температурой плавки. Также такие припои имеют высокую текучесть и при воздействии на медь обеспечивают надежное и долговечное соединение металлов.

Техника безопасности при пайке

При работе с паяльником и прочими инструментами и материалами, нужно соблюдать такие правила безопасности:

  • материалы нужно использовать исключительно по их назначению;
  • инструменты и материалы должны выбираться в соответствии с техникой безопасности, нельзя использовать неисправные аппараты;
  • помещение, где проходит процесс пайки, должно быть проветренным;
  • при работе не забывайте надевать защитные очки, перчатки, открытые участки тела нужно покрыть специальной рабочей одеждой.

Процесс пайки невозможен без применения электрического паяльного аппарата, вспомогательных средств, а также таких материалов для работы, как флюс и припои. Как вы смогли убедиться из данного материала, они играют немаловажную роль в данной работе.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector