6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Флюс для пайки термофеном

Практические приемы пайки BGA элементов.

Зачем нужна пайка BGA.

В современной радиоэлектронной аппаратуре ,такой, как мобильные телефоны, компьютеры и пр. , широко применяются радиоэлементы в корпусе типа BGA (в дальнейшем BGA-элемент). Данный тип корпуса позволяет значительно экономить место на печатной плате за счет размещения выводов на нижней поверхности элемента и выполнения этих выводов в виде плоских контактов, с нанесенным припоем в виде полусферы . В корпусе такого типа выполняют полупроводниковые микросхемы, элементы ВЧ тракта (фильтры, селекторы, коммутаторы ). Пайка такого элемента осуществляется нагревом непосредственно корпуса элемента и зачастую подогрева печатной платы, при помощи горячего воздуха и инфракрасного излучения.

Оборудование для пайки BGA

Пайка BGA-элементов имеет определенные сложности и зачастую для нее применяется весьма сложное и дорогостоящее оборудования. Данная статья описывает пайку с применением минимума средств. Минимум, который необходим для пайки: фен, пинцет, микроскоп, флюс безотмывочный, жидкость для удаления флюса, вата х/б, шило монтажное (лучше стоматологический зубной зонд) для коррекции элемента на плате, фольга с клеевым слоем для теплозащиты.

Процесс пайки BGA

Случай, когда требуется заменить BGA элемент, является более общим, а потому его и рассмотрим. Первое, что нужно сделать- это оценить, не будут ли повреждены близко расположенные элементы потоком горячего воздуха. Микросхемы, залитые компаундом, элементы, имеющие пластиковые детали (микропереключатели, SIM-ридеры) необходимо закрыть фольгой для сведения к минимуму теплового воздействия. Если есть близкорасположенные микробатарейки, микроаккумуляторы, их лучше всего демонтировать, а затем поставить на место при помощи паяльника. Приняв необходимые меры предосторожности, располагаем плату на столе так, чтобы демонтируемый BGA- элемент легко было поднять пинцетом, когда припой расплавится. Имеется в виду, что для захвата пинцетом должно быть необходимое пространство и пинцет при захвате должен располагаться в руке удобно и естественно, иначе очень высока вероятность сдвинуть соседние элементы, так как припой, закрепляющий их, будет тоже расплавлен. Лучше всего плату надежно закрепить в горизонтальном положении и повернуть ее в горизонтальной плоскости под удобным углом. Затем начинаем греть элемент феном, который держим в левой руке, периодически пытаясь приподнять элемент пинцетом (примерно через каждые 30 секунд). Время нагрева сильно зависит от условий в помещении: температуры воздуха, наличия сквозняков, открытых форточек и т.д. Если элемент приподнялся с одного края, то насильно отдирать его нельзя, а нужно отпустить и еще погреть 15-30 секунд. Прикосновение холодным пинцетом сильно остужает элемент, это тоже нужно иметь в виду. Неплохо во время нагрева держать пинцет рядом со снимаемым элементом, для подогрева пинцета. После снятия элемента дальнейшие операции лучше проводить с еще горячей платой. (Если при прогреве элемент подпрыгнул, в буквальном смысле, то это свидетельствует о расслоении печатной платы в результате заводского дефекта. Такая плата ремонту не подлежит. ) Когда микросхема снята, необходимо удалить лишний припой с платы. Для этого наносим пастообразный флюс и собираем припой паяльником, периодически удаляя припой с жала. Необходимо учитывать, что большие «горки» припоя затруднят позиционирование нового элемента. А если пятаки(контакты на плате) будут не облужены, то получившийся контакт может быть не надежен. Следует обратить внимание на целостность пятаков. Если отвалились пустые пятаки, то ничего страшного, если отвалился пятак, имеющий контакт, то можно попробовать облудить металлизацию в отверстии и сформировать капельку припоя на месте пятака. Затем удаляем грязь и остатки флюса с платы. Глядя в микроскоп, необходимо проконтролировать результат и исправить недостатки. Недостатки могут быть следующего характера: плохо облуженные пятаки, на пятаках слишком много припоя, замыкания между пятаками, повреждения паяльной маски, поврежденные пятаки, отслоившиеся проводники. Если дефект устранить не удается, то изделие неремонтопригодно. Затем наносим пастообразный флюс. Флюс необходимо наносить на всю поверхность под элементом, даже если контакты расположены только по периметру. Иначе воздух из пустоты в середине при нагреве расширится и значительно сместит элемент. Важно количество флюса. Его должно быть достаточно для смачивания нижней поверхности элемента, но если элемент будет плавать в «луже», то его будет трудно позиционировать. Я предпочитаю флюс, нанесенный на плату, прогреть феном до жидкого состояния, перед помещением BGA-элемента на плату. Так как при пайке он все равно нагреется и элемент может значительно сместиться.

Рис.1 Расположение выводов по периметру.

Область выводов закрашена серым.

Извлекаем элемент из контейнера и ставим на плату, соблюдая ориентацию «ключа». Точное позиционирование выполняем под микроскопом по маркерам при помощи монтажного шила. При позиционировании следует учитывать шаг между контактами. Не обязательно добиваться идеального расположения, достаточно небольшого соприкосновения между «шарами» припоя на BGA-микросхеме и пятаками на плате. Оценивать точность позиционирования необходимо с учетом шага контактов и их размера.

Рис.2 Правильное позиционирование.

Необходимое выравнивание произойдет за счет эффекта смачивания при расплавлении припоя.

На Рис.1 приведен пример правильного позиционирования микросхемы на плате, на Рис.3 и Рис.4 приведены примеры неправильного позиционирования элемента на плате. На Рис.3 «шары» припоя одновременно соприкасаются с двумя пятаками, при этом при расплавлении припоя микросхема может встать неправильно, или могут возникнуть замыкания. На Рис.4 шары совсем не соприкасаются с пятаками, при этом сколько бы мы ни грели элемент, его пайка не произойдет. Обычно имеется взаимосвязь между линейными размерами маркера и шагом выводов на элементе. Если имеются сложности с позиционированием, то иногда имеет смысл прогреть примерно установленный элемент феном, для выпаривания флюса. После выпаривания флюс будет вязким и элемент можно установить более точно.

Рис.3 Неправильная установка. Неоднозначное соприкосновение «шаров» и пятаков.
Рис.4 Неправильная установка. Нет соприкосновения «шаров» и пятаков.

Для пайки необходимо отрегулировать расход воздуха под конкретную форсунку. Элемент не должно сдувать. Если элемент сдувает, то подачу воздуха нужно уменьшить. Температура на индикаторе паяльной станции зачастую не соответствует температуре воздуха, выходящего из форсунки. Нормально, если индикатор будет показывать 500-550 гр.С. Предварительно прогревают элемент, для этого нужно держать фен на расстоянии 2-3 см; через 30-60 секунд приближают фен на расстояние 5-10 мм от поверхности элемента для расплавления припоя. Плавными движениями прогревают поверхность элемента и пространство непосредственно рядом с ним. Примерно через 60-180 сек. элемент заметно осядет и выровняется по маркерам (оседание видно, если смотреть сбоку), что свидетельствует о расплавлении припоя. После оседания элемент следует погреть 10-15 секунд. Большая микросхема может оседать частями, сначала с одной стороны. В этом случае нужно продолжать греть всю поверхность, обращая особое внимание на непропаянную часть. После этого нужно дать остыть плате в течении 15-60 секунд, жидкостью для снятия флюса, снять избытки флюса и просушить плату. Качество пайки можно контролировать по следующим признакам: расположение элемента относительно маркеров; лучше сравнивать с такой же платой или запомнить расположение элемента, маркеры не всегда расположены идеально ровно и может возникать впечатление, что элемент не совсем правильно встал на место, глядя на элемент сбоку, можно оценить, на всех ли контактах образовалось качественное соединение; если рядом с BGA-элементом расположен крупногабаритный элемент, то с одной из сторон пайка может быть затруднена вследствии неудачного распределения воздушных потоков, и элемент с одной из сторон не пропаяется. Глядя при помощи микроскопа на форму капель припоя, можно оценить качество пайки. Обратите внимание. Если при прогреве элемент подпрыгнул, то это свидетельствует о расслоении печатной платы в результате заводского дефекта. Такое изделие ремонту не подлежит. Ничего страшного, если элемент с небольшим количеством выводов встал криво, не на место. Как правило, возможно его аккуратно поднять и припаять правильно без стандартной накатки шаров. При определенном навыке возможно снять и вновь поставить BGA-элемент и с очень большим количеством выводов и очень мелким шагом выводов, без накатки шаров. Некоторые жидкости для снятия флюса могут вызывать сбои при работе телефона. Поэтому плату после промывки необходимо хорошо просушивать в течении 3-4 часов. Примерный паяльный профиль для паяльной станции типа Martin: 240 гр.—80 сек. 320 гр. —110 сек. Повторная пайка снятого BGA-элемента возможна, но она в данной статье не рассматривается, так как применяется весьма редко. Паяльная маска- это изолирующий состав, которым покрывается печатная плата для предотвращения повреждений проводникв и коротких замыканий между проводниками. Маркеры – это метки на печатной плате, показывающие, как правильно должен стоять элемент; зачастую элемент может быть в корпусах разного размера и на одном посадочном месте , в этом случае на плате будет много маркеров. Если видны вспучивания платы под микроскопом, то это свидетельствует о заводском дефекте; такая плата ремонту не подлежит. Как правило, удается оценить подачу воздуха феном, направляя поток на руку, с расстояния 20-30 см, на время 0,5-1 секунду. Данный прием небезопасен и требует определенного опыта.

Популярные флюсы для пайки

Хорошее соединение при пайке можно получить, соблюдая определенные требования, среди которых важным является правильный выбор флюса. Существует много составов органического, минерального и смешанного происхождения. Они имеют отличия в свойствах и рекомендациях по применению.

Для чего применять

Начинающий паяльщик не всегда оценивает важность функций, выполняемых флюсами. Есть детали, припой, паяльник или другие инструменты для пайки. Все прогрел, соединил, охладил, промыл – и готово.

На самом деле процесс идет сложнее. Надежно соединиться могут только поверхности, избавленные от оксидного налета, других примесей.

Припой должен равномерно растекаться в требуемом месте, а не где попало. У материалов должно быть подходящее сочетание, при котором адгезия максимальна.

Для этого нужно уменьшить силы натяжения на поверхностях. Для многих видов пайки не допускается влияние внешней среды. Нужно изолировать рабочую зону от окружающей атмосферы.

Следовательно, основные функции флюса следующие:

  • удаление оксидного налета и примесей,
  • обеспечение хорошего распределения припоя,
  • улучшение адгезии материалов,
  • защита места соединения от воздуха и влаги.

Со всеми задачами может справиться хороший флюсовый состав. В продаже их существует множество. Можно сделать неплохие композиции в домашних условиях, но лучше купить готовые составы, которые многократно апробированы в работе.

Выбрать флюс для пайки несложно. Нужно располагать информацией об имеющихся марках и учесть специфику предстоящей пайки.

Популярные разновидности

Широко применяются составы разной консистенции. К числу самых известных флюсов, которые можно выбрать для пайки тех или иных деталей, относят:

  • канифоль и ее спиртовые растворы;
  • растворы глицерина;
  • буру;
  • паяльный жир;
  • ортофосфорную кислоту;
  • паяльную кислоту (раствор хлорида цинка в соляной кислоте);
  • некоторые марки гелевых флюсов (Flux-Plus, RMA-223).

Существуют композиции в виде трубок или брикетов из пасты, содержащие одновременно флюс и припой. Во многих случаях это очень удобный вариант, упрощающий проведение пайки.

Раздумывая над тем, какой флюс можно использовать для пайки феном, не сомневайтесь, выбирайте пасту. Приемлема она, в основном, для монтажа на поверхности, работы в труднодоступных местах, с SMD деталями.

Лучший паяльный флюс выполняет сразу все необходимые функции. Имеются разные классификации вспомогательных составов для пайки.

Флюсы могут быть очень активными, хорошо удаляющими оксиды и другие примеси на поверхности. Обратная, неприятная сторона их действия – возможность окисления металла детали. Пайку нужно проводить аккуратно с последующим промыванием рабочей зоны.

Читать еще:  Припой для пайки титана

Существуют составы с умеренным действием, обеспечивающим достаточную очистку поверхности, хорошее распределение припоя.

С канифолью

Планируя монтаж электрических схем или радиодеталей с использованием легко плавящихся припоев в качестве флюса, имеет смысл выбрать чистую канифоль или смеси на ее основе.

Достоинство природной смолы заключается в ее инертности. Она прекрасно защищает место соединения от окисления, не вызывает коррозии, восстановления, растворения металлических частей.

После применения обычной светлой канифоли рабочую зону достаточно очистить кистью или ватным тампоном, слегка смоченным спиртом. Можно как растворитель использовать ацетон.

Для пайки в труднодоступных местах целесообразно выбрать раствор канифоли в спирте. Если нет канифоли, можно взять хвойную смолу. Результат не разочарует. Спирт иногда заменяют одеколоном, бензином, ацетоном, этилацетатом.

Если место пайки в перспективе будет подвергаться высоким термическим нагрузкам, имеет смысл в смесь канифоли и спирта добавить глицерин.

Для приготовления растворов подходит этиловый спирт любой степени очистки. Канифоль нужно брать обычную, а не специально приготовленную для натирания смычков. «Музыкальные» виды могут иметь примеси, мешающие пайке.

На основе соляной кислоты

Распространенным компонентом с большой активностью являются составы на основе соляной кислоты. Она быстро убирает все оксиды при пайке изделий из стали мягкими припоями.

Для радиомонтажных работ применение соляной кислоты не рекомендуется. Активность кислоты может иметь неприятные последствия. Места обработки легко подвергаются в последующем коррозии, поэтому рабочую зону следует после пайки тщательно промывать горячей водой.

Работа с соляной кислотой должна проводиться осторожно, под вытяжным шкафом. Пары могут повредить слизистые оболочки глаз, дыхательных путей.

Для работы с латунью, медными и стальными сплавами целесообразно выбрать хлористый цинк в растворе соляной кислоты. Он легко получается в домашних условиях добавлением металла в кислоту.

Специфические виды пайки удобно проводить с флюсовой пастой, состоящей из насыщенного водного раствора хлорида цинка, вазелина.

Для пайки никелевых сплавов и платины рекомендуется многокомпонентная смесь из хлорида цинка, этилового спирта, глицерина, воды.

Цветные и благородные металлы ремонтируют пайкой с флюсом, состоящим из канифоли и хлорида цинка в спирте. Место соединения после работы промывают ацетоном.

При необходимости получить соединения с повышенной прочностью при пайке таких же сплавов, следует выбрать флюсовую пасту из канифоли, хлорида цинка и технического вазелина. Промывка проводится тампонами, смоченными ацетоном.

Со слабыми кислотами и бурой

Многие мастера стараются выбрать для пайки средства, проверенные временем. Они предпочитают работать с нержавейкой, нихромом, некоторыми другими металлами и сплавами, применяя концентрированную ортофосфорную кислоту.

Флюс доступный, недорогой. К его главным недостаткам можно отнести способность образовывать продукты, хорошо проводящие электрический ток. Если это обстоятельство существенно ухудшит работу спаянной детали, следует выбрать другой флюс.

Для пайки металлических деталей мягкими припоями рекомендуется группа смесей с обозначением ЛТИ. Существует несколько разновидностей этой продукции, содержащей различное соотношение нескольких азотсодержащих соединений.

Для каждого вида флюса группы ЛТИ существуют строго определенные рекомендации, которые нужно обязательно учитывать.

Высокотемпературную пайку чугуна, медных сплавов, сталей с высоким содержанием углероды проводят, выбирая в качестве флюса буру. Ее расплав хорошо удаляет оксиды, другие примеси. После работы место пайки легко очищается механически.

Не требующие отмывки

В последние годы увеличивается популярность безотмывочных флюсов для пайки. Достоинство таких растворов, гелей заключается в экономии времени.

После работы нет необходимости тщательно промывать место соединения, потому что смеси не содержат компонентов, вызывающих порчу металлов.

Наносят безотмывочные флюс-гели специальными аппликаторами, которые есть в продаже. Можно сделать подобные приспособления самостоятельно из одноразового шприца и трубочки из резины или силикона. Безотмывный флюс отличается химической инертностью, но его остатки все равно лучше стереть с поверхности соединения.

Для того, чтобы выбрать удачный флюс для пайки, нужно продумать все нюансы предстоящей работы, изучить состав металла, предусмотреть приемлемые способы очистки.

Важным фактором являются требования к качеству будущего соединения, условиям эксплуатации детали. Во многих ситуациях следует поинтересоваться электропроводностью флюса, остаточным сопротивлением будущего места соединения.

Анализ всей информации позволит выбрать удачный флюс, получить хороший результат пайки.

Флюс для пайки термофеном

Паять в домашних условиях SMD компоненты (чип-резисторы, SOIC, LQFP, QFN и проч.) с помощью паяльной пасты и нехитрого оборудования совсем не так сложно, как может показаться на первый взгляд.

Помню свои первые опыты паяния пастой. Купил пасту, намазал места пайки резистора и пытался прогреть паяльную пасту паяльником. Конечно, это было ошибкой, и ничего у меня из такой пайки не получилось. Впоследствии я выяснил, что нагревать место пайки с паяльной пастой нужно струей горячего воздуха или инфракрасным излучением, причем при этом желательно соблюдать определенную последовательность нагрева, т. е. температура во времени должна меняться по специальному (оптимальному с точки зрения пайки) закону. Графики изменения температуры во времени еще называют температурными профилями. Для точного нанесения паяльной пасты на места пайки (особенно это важно для пайки ножек чипов) применяют паяльные маски. В состав паяльной пасты входит флюс и взвесь из мелких частичек припоя. Пайка с помощью паяльной пасты основана а эффекте смачивания (смачиваются паяемые поверхности сначала флюсом, а затем расплавленным припоем) и поверхностного натяжения жидкости. Капли расплавленного припоя под действием силы поверхностного натяжения автоматически устанавливают паяемую деталь на посадочное место.

При пайке в домашних условиях можно не вдаваться во все технологические премудрости пайки с помощью термопасты, и максимально упростить процесс. Нужно просто заранее подготовить все необходимое для пайки, и соблюдать несложные правила.

[Оборудование для пайки и необходимые материалы]

1. Оловянно-свинцовая паста EFD Solder Plus SN62NCLR-A, она на основе сплава Sn62Pb36Ag2 с добавлением флюса класса NO CLEAN. Ни в коем случае не советую применять бессвинцовую паяльную пасту — она для пайки в домашних условиях непригодна. Паста удобна для использования, если она находится в специальной тубе, см. фото. Оттуда её можно выдавливать любым толкателем (можно взять поршень от одноразового шприца). На конец тюбика можно надеть обычную медицинскую одноразовую иглу диаметром около 0.5 мм. Кончик иглы лучше сточить (затупить) под прямым углом. Если есть возможность, то лучше взять иглу от большого, 50-кубового шприца диаметром 0.9 мм, или купить в салонах «Профи» специальную иглу для дозатора пасты, эта игла обычно имеет диаметр 1.4 мм. В этом случае паста будет выдавливаться намного легче.

2. Флюс EFD Flux Plus 6-412-A no clean или аналогичный по качеству, неактивный. Для нанесения флюса можно взять иголку любого диаметра, лучше всего подойдет игла диаметром 0.5 или 0.9 мм.

3. Деревянные зубочистки — для точного нанесения паяльной пасты.

4. Монтажный фен с цифровым регулятором температуры и потока воздуха. Совсем неплох недорогой фен AOYUE 8032A++. Не покупайте фен без точной установки температуры, так как трудно на глаз установить температуру струи воздуха. Пригодятся также насадки для точного направления воздуха. Я часто пользуюсь насадкой с круглым соплом диаметром 12 мм.

5. Паяльник с регулировкой температуры. Для пайки микросхем понадобится также тонкое жало «волна». Я использую паяльник PX-601 со сменными жалами и регулятором температуры.

6. Средство для очистки плат — ацетон, спирт или, что еще лучше, аэрозоль FLUX-OFF.

[Условия качественной пайки]

1. Паяемые поверхности должны быть хорошо облужены. Если у Вас новые детали и свежая печатная плата, которая пришла с завода, либо качественное золотое покрытие на печатной плате, то об этом можно не беспокоиться. Если же поверхность платы необлужена или окислена, то нужно её предварительно перед пайкой облудить легкоплавким припоем. Перед пайкой поверхность желательно очистить от окислов. Если плата не очень грязная, то для очистки можно использовать обычную канцелярскую резинку для стирания карандашных надписей. Если плата сильно загрязнена (фольга тусклая, имеет покрытую окислами поверхность), то лучше использовать для очистки мелкозернистую наждачную бумагу (нулевку).

2. Важна консистенция паяльной пасты, когда Вы её наносите на паяемые поверхности. Паста должна выдавливаться из иглы шприца без значительных усилий. Если это не так (паста загустела, или Вы почему-то решили взять для нанесения пасты тонкую иглу 0.5 мм), то слегка разбавьте пасту флюсом EFD Flux Plus 6-412-A no clean. Паста также не должна быть рыхлой, как мокрый песок, она должна иметь вид сметаны и хорошо смачивать поверхность, на которую Вы её наносите. Слишком жидкая паста тоже не нужна, так как там будет мало припоя для надежной пайки, и паста будет растекаться по поверхности платы. Если паста долго лежала без дела, то перед использованием тщательно перемешайте пасту. После использования пасты и шприца вставьте в канал иглы тонкую проволочку (кусок гитарной струны или отрезок вывода радиокомпонента). Это нужно для того, чтобы паста не засохла в канале иглы и не закупорила её.

Важный момент — паста должна быть достаточно свежей. Просроченная паста приведет к тому, что при разогреве мелкие шарики в составе пасты не будут сливаться вместе. Ниже на фотографии приведен пример пайки просроченной пастой (R4) и нормальной пастой (R5).

Видно, что шарики у верхнего резистора R4 лежат возле него кучкой — они просто слиплись, но не сплавились. Пайка нижнего резистора R5 получилась качественной, все шарики припоя в пасте слились вместе.

3. Когда Вы паяете простые компоненты, типа резисторов и конденсаторов, то количество наносимой пасты не играет особого значения. В этом случае пасту можно наносить в нужное место, просто выдавливая её из иголки тубы.

4. При пайке микросхем нельзя класть слишком много пасты, так как образующиеся шарики припоя могут замкнуть выводы микросхем, после чего излишки припоя придется убирать паяльником с жалом «волна». С микросхемами типа SOIC или TQFP это делается просто. Сложнее обстоит дело с корпусами типа QFN, так как у них имеется на брюшке корпуса металлическое теплоотводящее основание, и будет неприятно, если припой замкнет на него, особенно если в нескольких местах. Для того, чтобы этого не произошло, пасту надо наносить тонким слоем (можно даже между ножками), не больше чем нужно, и стараться не наносить её за пределы паяемой области (особенно нужно обратить внимание, чтобы излишки пасты не попали под корпус QFN). Для точного нанесения пасты используют деревянную зубочистку.

5. Перед пайкой микросхем необходимо, кроме покрытия дорожек на плате, еще и смазать паяльной пастой ножки микросхем. Особенно внимательно надо смазывать ножки микросхем QFN — паста должна надежно смочить выводы, и покрыть их тонким слоем. Ни в коем случае нельзя допускать попадания излишков пасты под основание корпуса QFN!

Корпус QFN для пайки требует специальной разводки печатной платы. Под корпусом у микросхемы QFN должна быть специальная площадка из фольги, и нужно, чтобы в центре было специальное отверстие диаметром около 1 мм для удаления излишков припоя. Кроме того, под корпусом микросхемы QFN не должно быть никаких посторонних переходных отверстий и токопроводящих дорожек.

Читать еще:  Какую кислоту используют при пайке?

7. Если паяемая плата имеет большие размеры, то при пайке платы желателен её нижний подогрев до температуры около 150 o C — чтобы избежать возможного коробления платы. Для этого имеются специальные паяльные ванны и стенды для монтажного подогрева.

8. Излишки олова, если они замкнули ножки микросхем, можно удалить жалом паяльника типа «волна», или распушенными жилами провода МГТФ, если их приложить в нужное место и нагреть паяльником. При удалении излишков олова смачивайте поверхности пайки флюсом EFD Flux Plus 6-412-A no clean.

[Последовательность действий при пайке]

1. Поверхность платы очищается, обезжиривается и высушивается. Для ускорения сушки можно воспользоваться феном (температура струи воздуха 110..130 o C).

2. Печатная плата надежно фиксируется в горизонтальном положении.

3. Паяльная паста наносится на печатную плату в места будущей пайки. Можно наносить пасту и между ножками микросхемы, важно только при этом не допускать излишков пасты, и добиться чтобы вся паяемая поверхность была смочена пастой.

4. На плату устанавливаются мелкие детали (чип резисторы и конденсаторы).

5. Паяльной пастой смазываются ножки SMD микросхем и разъемов.

6. На плату устанавливаются SMD микросхемы и разъемы. Постарайтесь добиться точного совмещения ножек микросхем и контактных площадок на печатной плате. Если Вы нанесли слишком много паяльной пасты, то её излишки будут мешать визуальному контролю точности установки микросхем.

7. Включается (если он есть) нижний подогрев платы. Через пару минут фен устанавливается на температуру 150 o C и несильной струей воздуха осторожно (чтобы не сдуть детали) прогревается паяемая верхняя сторона платы вместе с установленными деталями. Прогрев продолжается до тех пор, пока флюс из паяльной пасты не испарится. Если плата большая, то она должна быть установлена на инфракрасную печку настроенной температурой 150 o C.

8. Фен устанавливается на температуру около 250 o C (температура оплавления оловянно-свинцовой паяльной пасты около 200 o C), и поверхность платы снова прогревается, при этом частицы припоя в пасте должны оплавиться и сформировать аккуратную пайку. Процесс хорошо отслеживается визуально. Особенно внимательным надо быть при пайке микросхем QFN, и прогревать все стороны микросхемы одновременно и очень равномерно. Иначе припой с одной стороны расплавится быстрее, чем с другой, и микросхема может перекоситься и сместиться в сторону, «уплыть».

9. В течении нескольких минут дают плате остыть, затем отмывают средством FLUX-OFF или спиртом.

На YouTube можно найти много видеороликов, иллюстрирующих процесс пайки.

Все о пайке микросхем феном

  1. Особенности пайки
  2. Инструменты и материалы
  3. Технология
  4. Способы

При монтаже мелких радиоэлементов на печатные платы наилучшие результаты дает пайка микросхем специальным феном. Этот процесс требует определенных знаний и навыков, поэтому мы расскажем, как нужно паять феном с флюсом без повреждения платы и компонентов на ней.

Особенности пайки

Сейчас развитие электроники идет по пути все более плотного монтажа компонентов на печатной плате. Помимо очевидных достоинств, прогресс приводит к трудностям ремонта из-за очень компактных размеров. Это очень затрудняет работу паяльником, и поэтому для монтажа планарных деталей, микросхем и смд-конденсаторов обычно применяется пайка с помощью специального фена.

Термофен – это отдельный элемент паяльной станции. Он создает узкий поток воздуха, нагретого до температуры 400–500 градусов и двигающегося с определенной скоростью.

Поэтому при работе с ним нужно учитывать ряд особенностей.

  • Температуру нагрева следует регулировать в зависимости от выполняемой работы, размера компонента и вида припоя.
  • Скорость потока воздуха должна быть наименьшей, иначе при работе фен может сдуть соседние мелкие компоненты. Но от нее зависит скорость прогрева, поэтому ее нужно регулировать индивидуально.
  • Фен комплектуется несколькими насадками, которые регулируют мощность воздушного потока. Правило простое – для мелких деталей лучше выбирать узкую насадку.
  • При нагреве припой, закрепляющий соседние компоненты, может размягчиться. Тогда эти детали сдвинутся, нарушится контакт между ними, и плата будет работать некорректно. Во избежание этого их нужно экранировать фольгой или термоскотчем, чтобы они не нагрелись.
  • Фен нужно держать строго перпендикулярно поверхности платы.

Исходя из этого, к работе нужно подойти максимально ответственно.

Инструменты и материалы

Для паяния печатных плат нам понадобятся:

  • собственно, паяльная станция с феном и набором насадок;
  • флюс (например, Interflux IF8001) – это весьма важный компонент, он обеспечивает хороший контакт элементов при сборке и дальнейшую работоспособность платы;
  • паяльная паста;
  • трафарет для нанесения паяльной пасты на микросхему;
  • легкоплавкие припои (например, сплав Вуда, сплав Розе), они помогут при выпаивании компонента с платы;
  • средство для удаления лишнего припоя, это может быть шприц для отсоса или медная оплетка («косичка» из тонкой проволоки);
  • пинцет или плоская отвертка;
  • технический спирт для промывки соединения.

Этот набор подбирается индивидуально для каждого мастера. А кроме того, потребуются качественное освещение и линза для осмотра паяльного шва.

И еще – предельная внимательность и море терпения.

Технология

Процесс выполнения работы состоит из 3-х основных частей: выпаивание старого элемента, очистка платы от лишнего припоя и монтаж новой детали. Рассмотрим эти этапы отдельно.

Демонтаж старого компонента выполняется в определенной последовательности.

  1. Перед снятием по краю корпуса микросхемы на плате нанесите риски, определяющие ее положение. Например, иголочкой аккуратно оставьте царапины. Достаточно отметить 2-е перпендикулярные стороны.
  2. Установите на паяльной станции температуру нагрева. Она должна быть 345–350 градусов. Скорость потока воздуха желательно выбрать наименьшую.
  3. Нанесите флюс на паяльный шов.
  4. Прогрейте место соединения детали с платой. Греть надо 3–5 минут, пока не расплавится припой (это сразу будет видно). Если он не плавится – повысьте температуру на 5 градусов.
  5. Греть нужно не только по центру компонента, а еще и по периметру микросхемы. Пройдитесь феном по всей длине паяльного шва.
  6. Когда припой расплавится, уберите старую деталь. Для этого подденьте ее пинцетом и поднимите вверх. Вместо пинцета можно использовать плоскую отвертку, но есть риск повреждения платы. Если деталь «не идет» – значит, припой не расплавился. Продолжите нагрев.

Важно! Поднимать старую деталь нужно строго вверх, не допуская ее перемещения в стороны. Иначе расплавленный припой замкнет соседние контакты, и удалить его будет непросто.

Или еще хуже – от платы оторвется дорожка, восстановить которую еще сложнее.

Далее переходим к подготовке контактных площадок платы.

  1. Расплавьте припой на месте контакта.
  2. Если есть шприц, удалите с его помощью лишний металл.
  3. Если шприца нет, воспользуйтесь медной оплеткой. Для этого минимально распушите ее, чтобы были видны поры. Далее обильно покройте ее флюсом, приложите к месту соединения и прогрейте феном или паяльником. Оплетка впитает в себя лишний металл. После этого остается отрезать ненужную ее часть.

Следует полностью освободить плату от припоя.

Далее переходим к подготовке детали. Главная задача – нанести на контакты припой в виде шариков одинакового размера (это называется реболлинг). Для этого воспользуйтесь трафаретом.

Трафарет – это металлическая пластина со множеством отверстий, в которые ножками вставляется деталь.

Для его использования проделайте следующее.

  • закрепите радиокомпонент на трафарете специальной изолентой;
  • с тыльной стороны шпателем нанесите паяльную пасту;
  • установите температуру нагрева 300 градусов;
  • прогрейте деталь вместе с трафаретом, а когда появится характерный блеск, то отключите нагрев;
  • дайте полностью остыть компоненту;
  • уберите изоленту;
  • включите нагрев 150 градусов, прогрейте деталь и аккуратно освободите ее из трафарета.

Внимание! Паяльная паста должна быть качественной, иначе припой не сможет закрепиться на контактах. При выборе пасты нагрейте ее небольшое количество.

Качественная паста образует большой гладкий шарик, а бракованная – распадается на множество мелких. При этом повышение температуры ей не поможет, и шов будет плохой.

После этого переходите к установке нового радиокомпонента.

  1. Нанесите небольшое количество флюса.
  2. Точно наложите новую деталь на плату. Ориентируйтесь на риски и на ощупь постарайтесь расположить микросхему на наибольшей высоте, чтобы шары на ней соответствовали контактам на плате. Можете ориентироваться на просвет между платой и деталью, для этого посмотрите на шов сбоку.
  3. Если рисок нет, то переверните микросхему выводами вверх и приложите ее краешком к пятакам платы, после этого засеките положение детали. Затем установите элемент по этим засечкам.
  4. Настройте температуру 345–350 градусов и прогрейте элемент. Припой должен ярко заблестеть и залить каждый контакт. Важно! Как и при снятии, прогревать компонент надо не только по центру, но и по периметру. Обойдите феном весь шов по длине.
  5. Дождитесь полного остывания припоя. Место пайки желательно протереть спиртом.

После этого остается только проверить плату на работоспособность.

Способы

Работу можно значительно облегчить, если воспользоваться некоторыми методами профессионалов.

  • Для облегчения съема старого компонента можно применить подогрев платы снизу. Для этого закрепите ее зажимом, переверните и прогрейте феном в течение 5 минут. После этого работайте как обычно. Процесс пойдет быстрее.
  • Чтобы выпаять старый компонент без риска перегрева, можно использовать легкоплавкие припои (сплав Вуда, сплав Розе). Для этого покройте шов флюсом и нанесите этот сплав. Температура его плавления меньше, чем у олова. Когда вы начнете греть, он расплавится и смешается с оловом на плате, тогда деталь выпаяется быстрее и без перегрева.
  • При пайке нежелательно использовать спирто-канифольный флюс, поскольку у него низкое удельное сопротивление.

При работе всегда соблюдайте технику безопасности, особенно с нагретым оборудованием. Работайте в хорошо проветриваемом помещении с достаточным количеством света.

О пайке микросхем феном смотрите далее.

Как подобрать расходные материалы и аксессуары для пайки

Правильный выбор расходных материалов для пайки, таких как флюс, припой, жала для паяльника, насадки для фена и пр., не менее важен, чем выбор паяльной станции.

Фактически, используя самую передовую паяльную станцию с несоответствующим флюсом или жалом, которое не предназначено для выполнения требуемых задач, можно получить результат, говоря техническим языком — противоположный положительному.

С тех времен, когда инженеры использовали классический 60-ваттный паяльник с медным, выточенным напильником жалом, а также канифоль и припой ПОС60, воды утекло уже достаточно много. Поэтому, для выполнения большинства задач по пайке такой комплект уже не пригоден.

Процент использования дискретных элементов на плате неуклонно уменьшается, а количество SMD, BGA-компонентов и плотность монтажа – такими же темпами постоянно растут.

С вопросом выбора паяльной станции в таких условиях мы попытались разобраться в предыдущей статье. А вот с нюансами, которые касаются выбора расходников, будем разбираться в этом обзоре.

Поскольку обычный паяльник уже стал практически инструментом для бытовых целей, рынок паяльного оборудования предлагает широкий спектр паяльных станций специализированного назначения для восстановления, фактически, любой современной техники.

Выбор флюса для пайки

Как говорят радиолюбители: «Хороший флюс — половина дела!», а мы не можем не согласиться с таким утверждением, потому что именно от антиоксидантных свойств флюса зависит успешность пайки.

Не сильно вдаваясь в теоретические выкладки, мы попытаемся классифицировать флюсы не только учитывая их номинальные характеристики, но и опираясь на личный опыт эксплуатации.

1. Неактивные и среднеактивные флюсы на основе канифоли

Применяются в основном радиолюбителями для пайки медных проводов и дискретных радиокомпонентов. Являются «улучшенной версией» обычной канифоли за счет добавления разных веществ, называемых «активаторами», органического и неорганического характера. Такие флюсы, в отличие от обычной канифоли, имеют лучшие антиоксидантные свойства. Благодаря агрегатному состоянию флюса (жидкому или пастообразному) его можно наносить непосредственно на место пайки или на монтажную плату. Также стоит отметить невысокую стоимость таких флюсов.

Читать еще:  Правила пайки паяльником

Рекомендуется использовать эти флюсы только со свинцовыми припоями.

2. Среднеактивные флюсы для SMD-компонентов

Требования к флюсам такого типа более жесткие:

  • они не должны пениться и закипать во время пайки;
  • должны обладать минимальной коррозийностью;
  • легко наноситься на плату.

Чаще всего флюсы для SMD-компонентов можно обнаружить в сервисных центрах по ремонту мобильных телефонов. Иногда их используют для пайки и реболлинга небольших BGA-микросхем. Как правило, эти флюсы пригодны для использования, как со свинцовыми, так и с безсвинцовыми припоями.

3. Флюсы для BGA-чипов

Флюсы для BGA компонентов адаптированы под особенности SMT-монтажа. Кроме всех перечисленных выше особенностей среднеактивных флюсов для SMD-компонентов, флюсы для BGA также должны обладать высокими диэлектрическими свойствами. Часто в названии таких флюсов фигурирует фраза «No Clean», то есть они не требуют отмывки, так как процессе пайки фактически полностью испаряются.

Гелеобразные BGA-флюсы являются универсальными. Например, инженеры нашего сервисного центра используют Interflux IF 8300-4 для любых видов пайки. Как и флюсы для SMD-компонентов, флюсы для BGA можно использовать как со свинцовыми, так и с безсвинцовыми припоями.

Выбор припоя

Выбор припоя сводится к выбору свинцового или безсвинцового, поэтому в этом вопросе все намного проще, по сравнению с выбором флюса.

Номинально пайка безсвинцовым припоем создает большую механическую прочность соединения, а его химический состав более экологически чистый (примерно 98% — олово, 2% — медь, серебро). На самом деле, ощутить это на практике весьма сложно, а в остальном безсвинцовые припои уступают свинцовым во всех аспектах:

  • их труднее паять, и для этого нужно использовать специальные паяльные станции;
  • они требуют использования исключительно дорогих флюсов;
  • они хуже смачиваются и растекаются по паяным поверхностям;

Как правило, такие припои используются в авторизированных сервисных центрах, где служба контроля строго проверяет качество работы и ее соответствие директиве RoHS.

Среди свинцовых припоев можно обнаружить большое количество вариаций на тему классического ПОС60.

и многие другие.

Также катушки припоя могут отличаться весом и диаметром сечения проволоки. Здесь выбор зависит только от ваших потребностей.

Выбор жала для паяльника

Прежде всего, нужно убедиться в том, что жало действительно подходит для вашей паяльной станции. Информацию об этом можно получить из описания товара, но лучше уточнить этот момент у менеджера или технического специалиста.

Далее нужно определиться со сферой применения паяльной станции и, отталкиваясь от этого, выбрать жало по форме и размеру наконечника.

1. Жало коническое

Наиболее часто встречаются в стандартной комплектации паяльной станции.

Это жало удобно использовать для выпайки небольших компонентов. Теплопередача у такого жала не очень высокая.

2. Жало со скосом (односторонний срез)

Это универсальный тип жала, поэтому, скорее всего, именно односторонний срез будет вашим основным рабочим жалом.

Модели с диаметром скоса 1

3 мм — подходят для монтажа, в первую очередь дискретных радиодеталей, а также для многих SMD-компонентов.

Модели с диаметром скоса 3

5 мм больше подходят для пайки массивных контактов, проводов.

Отдельный тип жала со скосом — это так называемая «микроволна». О чудодейственных свойствах «микроволны» сказано и написано уже многое. Мы же отметим, что действительно, на данный момент — это самый универсальный тип жала, с помощью которого можно успешно паять планарные микросхемы в разных корпусах, эффективно и просто залудить плату, соединять провода крупного сечения и при этом добиваться высокого механического и эстетического качества контактов. Весь секрет жала такого типа кроется в небольшой просечке на поверхности среза.

Единственным недостатком «микроволны» является отсутствие моделей с диаметром среза меньше 2 мм. Это связано с трудностью нанесения просечки достаточного размера.

3. Жало с двусторонним срезом (клин)

Сопоставимое по популярности с односторонним срезом, а вот выбор между ними, является, все же, делом личных предпочтений. Автор статьи предпочитает использовать такие жала с диаметром больше 5 мм для пайки массивных контактов.

4. Жало типа «нож»

Его нельзя назвать универсальным, потому что при использовании его для решения обычных задач, по удобству оно уступает клиновидному. Поэтому сфера его применения достаточно специфическая. Такое жало очень эффективно в качестве очистителя контактных поверхностей под BGA-микросхемы. Кроме жала, вам для этой задачи потребуется также поглощающая припой лента-оплетка.

5. Жало для SMD

Как можно понять из названия, данное жало создано специально для SMD-компонентов.

Его форма позволяет одновременно прогревать два контакта, что сильно упрощает процесс такого рода пайки.

Следует подбирать жало таким образом, чтобы оно соответствовало размерам компонентов, с которыми вы работаете.

6. Жало типа «тоннель»

Его можно встретить только в комбинации с мощными паяльниками (выше 100 Вт) или паяльными станциями для безсвинцовой пайки. Используют его для соединения медных листов или других задач, требующих большой теплоемкости жала.

Выбор насадки для термофена

Выбор насадки для термофена сводится к определению типа и размера микросхемы, для которой собственно она и приобретается.

Чаще всего встречаются насадки под корпуса BGA, SOP, QFP, PLCC, BQFP, SOJ, TSOL.

Стоит обратить внимание на то, что турбинные паяльные станции (Lukey 702, Lukey 898, Lukey 868, Lukey 852D+Fan и Lukey 853D) несовместимы со стандартными насадками. Для их использования необходимо приобрести специальный переходник.

В следующих статьях мы расскажем об остальных расходных материалах и аксессуарах для успешной пайки.

Юрий Стахняк,
Технический специалист магазина инструментов Masteram

Флюс для пайки термофеном

Электронная техника миниатюризируется, поэтому микросхемы в корпусах типа BGA получают все большее распространение в радиоэлектронной аппаратуре, в том числе в компьютерах и мобильных устройствах. Статья дает ответ на вопрос «Как паять корпуса BGA?» в форме подробной инструкции с практическими рекомендациями по пайке в домашних условиях.

Для начала разберемся, что такое корпус BGA. Аббревиатура BGA расшифровывается как «Ball grid array», то есть «массив шариков». Выражаясь научным языком, BGA — это тип корпуса поверхностно-монтируемых интегральных микросхем. BGA произошёл от PGA («Pin grid array»). BGA-выводы — шарики из припоя, нанесённые на контактные площадки с обратной стороны микросхемы.

Микросхему располагают на печатной плате согласно маркировке первого контакта на микросхеме и на плате. Затем микросхему нагревают с помощью паяльной станции или инфракрасного источника, так что шарики начинают плавиться. Поверхностное натяжение заставляет расплавленный припой зафиксировать микросхему ровно над тем местом, где она должна находиться на плате, и не позволяет шарикам деформироваться.

Достоинство корпуса BGA — компактность и экономия места на печатной плате. Выводы размещаются на нижней поверхности элемента в виде плоских контактов с нанесенным припоем в виде полусферы. В корпусах такого типа выполняют полупроводниковые микросхемы: процессоры, ПЛИС и память. Пайка элемента в корпусе BGA осуществляется путем нагрева непосредственно корпуса элемента, с подогревом печатной платы при помощи горячего воздуха или инфракрасного излучения.

Перейдем непосредственно к пайке BGA в домашних условиях.

Приступим к процессу пайки.

1) Микросхема перед началом пайки выглядит так:

2) Чтобы облегчить процесс постановки микросхемы на плату, сделаем риски на плате по краю корпуса микросхемы, если на плате нет шелкографии, которая показывает ее положение.

Выставим температуру 320–350°C на термофене. Для точного выбора ориентируйтесь на размер корпуса микросхемы. Чтобы не повредить мелкие детали, припаянные рядом, выставим минимальную скорость (напор) воздуха.

В течение минутного прогрева держим фен перпендикулярно к плате. Чтобы не повредить кристалл, направляем воздух не в центр, а по краям, по периметру. Через минуту поддеваем микросхему за край и поднимаем над печатной платой. Если микросхема «не поддается», значит припой расплавился не полностью; продолжайте нагрев. Не прилагайте усилия для поднятия микросхемы: есть риск повредить рисунок печатной платы.

3) После процесса «отпайки» печатная плата и микросхема выглядят следующим образом:

4) В качестве эксперимента на полученные плату и микросхему нанесем флюс.

Как выбрать флюс для пайки BGA, читайте в данной статье.

После прогрева припой соберется в неровные шарики. Нанесем спиртоканифоль (при пайке на плату пользоваться спиртоканифолью нельзя из-за низкого удельного сопротивления), греем и получаем:

Вот так выглядят плата и микросхема после отмывки:

Припаять эту микросхему на старое место просто так не получится, а значит нужна замена.

5) С помощью оплетки для удаления припоя 3S-Wick очистим платы и микросхемы от старого припоя. При очистке будьте аккуратны: не повредите паяльную маску, иначе потом припой будет растекаться по дорожкам. Полученный результат:

6) Приступим к «накатке» новых шаров. Теоретически, можно использовать готовые шары. Но вполне вероятно, что Вам потребуется разложить не одну и даже не две сотни таких шаров, потратив на это кучу времени и нервов. Трафареты для нанесения паяльной пасты способны решить эту проблему.

Рекомендуем паяльную пасту KOKI S3X58-M650-7 для BGA*. Мы сравнили нашу паяльную пасту и дешевый аналог, предлагаемый другой фирмой, которую не будем называть из соображений корпоративной этики. На фото виден результат нагрева небольшого количества пасты. Паста KOKI сразу же превращается в блестящий гладкий шарик, а дешевая распадется на множество мелких шариков.

*При накатке шаров паяльной пасты обратите внимание на корпус микросхемы: если на нем не стоит маркировка «Pb free», используйте свинецсодержащую пасту SS48-A230. Это связано с более низкой температурой плавления свинецсодержащей пасты. Фен ставим на 250–270°C.

Итак, закрепляем микросхему в трафарете для нанесения паяльной пасты с помощью крепежной изоленты:

Затем шпателем или просто пальцем наносим паяльную пасту.

После нанесения придерживаем трафарет пинцетом и расплавляем пасту. Температуру на фене выставляем не больше 300°C. Фен держим перпендикулярно плате. Трафарет придерживаем пинцетом до полного застывания припоя, потому что при нагреве трафарет изгибается.

После остывания флюса снимаем крепежную изоленту и феном с температурой 150°С аккуратно нагреваем трафарет до плавления флюса. После этого аккуратно отделяем микросхему от трафарета. В результате получаем ровные шары. Микросхема готова к постановке на плату:

7) Приступаем к пайке микросхемы на плату.

В начале статьи мы советовали сделать риски на плате. Если Вы все же проигнорировали этот совет, то позиционирование делаем следующим образом: переворачиваем микросхему выводами вверх, прикладываем краем к пятакам, чтобы они совпадали с шарами, засекаем, где должны быть края микросхемы (можно слегка царапнуть иглой). Сначала одну сторону, потом перпендикулярную. Достаточно двух рисок. Затем ставим микросхему по рискам на плату и стараемся на ощупь шарами поймать пятаки по максимальной высоте. Шары должны встать на остатки прежних шаров на плате.

Можно произвести установку, просто заглядывая под корпус, либо по шелкографии на плате.

Вновь прогреваем микросхему до расплавления припоя. Микросхема сама точно встанет на место под действием сил поверхностного натяжения расплавленного припоя. Важно: флюса наносим небольшое количество! Температуру фена вновь выставляем 320–350°С, в зависимости от размера корпуса микросхемы. Для свинецсодержащих микросхем ставим 250–270°C.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector