4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Флюс для пайки металла латунью

Работа с латунным припоем

Всем желающим заняться спайкой металлических изделий или заготовок обязательно потребуется соответствующий инструмент и подходящий для этих целей расходный материал.

В качестве последнего нередко используется специальный латунный припой, за счёт которого удаётся получить прочное и долговечное сочленение. Инструментом для работы с этим сцепляющим материалом может служить обычная газовая горелка.

Специфика работы с латунью

Сами латунные припои внешне напоминают обычный проволочный пруток, изготавливаемый из специальных тугоплавких сплавов.

При условии овладения всеми особенностями процесса соединения металлов, а также при наличии подходящих расходных материалов овладеть техникой пайки латунью в домашних условиях – вполне выполнимая задача.

В бытовой обстановке для этих целей может применяться обычная газовая горелка, питающаяся от баллона с пропаном. Паяльником расплавить латунный материал не получится.

Однако перед началом работ следует внимательно изучить все особенности процесса пайки латунью.

Специфика пайки состоит в необходимости применения расходного материала, точка плавления которого несколько ниже, чем тот же показатель для соединяемых металлических изделий.

При выполнении этого условия, являющегося обязательным для формирования надёжного неразъемного соединения, любой желающий сможет спаивать разнородные по своей структуре металлы.

В процессе проведения работ в зазор между заготовками засыпается припой для пайки, нарезанный до состояния мелкой стружки. И лишь после этого можно будет приступать к прогреву посредством газовой горелки (в её отсутствии можно воспользоваться паяльной лампой).

Не допускается путать пайку металла с близким ей по технике сварочным процессом, при котором расплаву подлежат обе сочленяемые заготовки.

Со схематическим представлением технологического процесса, при котором в качестве расходного материала используется латунная проволока, можно ознакомиться на фото.

Прямым следствием рассмотренных особенностей пайки латунным или оловянным припоем является возможность соединения небольших по размеру металлических деталей, которые в процессе обработки не будут сильно перегреваться.

На этом же принципе основаны технологии пайки заготовок из стали, при работе с которыми к латунному припою добавляются специальные активные добавки (флюсы). Последние существенно упрощают процесс соединения изделий за счёт повышения температуры в рабочей зоне и лучшего растекания расплава.

Области применения

Возможность пайки латунью обеспечивает надёжное соединение металлических изделий, что и определяет границы применения указанной технологии.

Без этого способа сочленения деталей невозможно было бы обойтись при выпуске продукции в таких отраслях промышленности, как:

  • электронное производство;
  • сборка холодильного и теплообменного оборудования (в этом случае латунным припоем пользуются при распайке тонких медных трубок);
  • изготовление специального режущего инструмента (резцов и насадок к ним).

В электронной промышленности латунные припои могут использоваться для пайки элементов сложных схем и их соединения с металлическими проводниками.

Помимо этого латунные припои широко применяются при необходимости соединения различных по толщине металлических заготовок, а также при проведении операций лужения, обеспечивающих создание на поверхности металла надёжного защитного покрытия.

Термические добавки (флюсы)

Чаще всего латунные припои применяются при необходимости сочленения изделий, изготавливаемых из того же материала.

Поскольку латунь (сплав цинка и меди в пропорции два к трём) относится к категории тугоплавких припоев – при работе с ней невозможно обойтись без специальных добавок – флюсов.

Грамотный выбор активных материалов при работе с латунными изделиями не только позволяет получить достаточно прочное соединение, но и существенно упрощает сам рабочий процесс.

Помимо всего прочего, получающиеся при работе с флюсом паяные швы имеют вполне законченный и эстетичный вид и не нуждаются в дополнительной правке.

Для получения требуемого результата не подойдут обычные составы на основе спирта и канифоли, посредством которых не удаётся растворить плёнку из окислов, всегда имеющейся на латунных изделиях.

Вот почему при пайке латуни должны применяться более активные виды флюсовых добавок, приготавливаемые на основе хлористого цинка. С перечнем существующих модификаций хлористо-цинковых флюсов и сферами их применения можно ознакомиться в соответствующей таблице.

К числу наиболее распространённых наименований флюсовых компонентов также относятся такие известные активные добавки, как бура и её производные (фтороборат калия, например).

При работе с бурой и другими флюсами содержание активных составляющих в зоне пайки не должно превышать 5-ти процентов, что вполне достаточно для хорошей текучести латунного припоя и качественного заполнения имеющихся зазоров.

Выбор марки

Для образования прочной и надёжной конструкции из латунных изделий также важно правильно подобрать тип проволочного припоя для высокотемпературной пайки.

Так, для работы с деталями и заготовками, предназначенными для эксплуатации в газовых средах, как правило, применяются припои, изготавливаемые на основе соединений серебра с небольшим количеством фосфорной меди.

Указанные припои идеально подходят для паяного сочленения латунных заготовок с большим содержанием меди.

В качестве связующего вещества довольно часто используется и чистая латунь, но при работе с ней важно обеспечить нужную температуру плавления, которая не должна превышать тот же параметр для обрабатываемых деталей.

При необходимости получения посредством пайки надёжного соединения повышенной прочности рекомендуется выбирать тугоплавкие (так называемые «твердые») составы, обладающие повышенной температурой плавления.

Для правильного выбора типа латунного припоя, подходящего для конкретных условий спайки, следует воспользоваться той же таблицей, приведенной выше.

Пайка латунью не является чем-то недоступным для обычного пользователя, которому для проведения этой процедуры достаточно иметь подходящий припой и следовать приведённым выше рекомендациям.

Пайка с флюсом

Фторид калия образует с 33 % NaF простую эвтектику с температурой плавления 700 °С. Флюс из смеси таких компонентов может быть изготовлен в виде пасты, замешанной на воде, спирте и четыреххлористом углероде.

Хлориды действуют аналогично фторидам, но имеют более узкий интервал действия и при более низких температурах, чем фториды.

Введение хлоридов во флюсы на фторидной основе понижает их температуру плавления. Хлориды имеют тенденцию окислять паяемый металл.

Щелочи — поташ и гидроокись натрия — используют для повышения температурного интервала активности флюсов; при этом даже следы влаги могут существенно уменьшать продолжительность действия флюса (его «живучесть»).

Среди высокотемпературных различают флюсы:

1) галогенидные (хлоридно-фторидные с температурными интервалами активности 400—625 °С и 600—1000°С);

2) с простыми и комплексными фторидами (с температурными интервалами активности 550—860 °С и 750—11 000 °С);

3) из фосфатов и силикатов с соединениями бора (с температурным интервалом активности выше 1000°С);

4) без соединений бора с фторидами и хлоридами; время действия флюсов обычно менее или равно 5 мин.

Составы важнейших флюсов и их ориентировочные температуры активности приведены в табл. 43, 44.

Флюсы ПВ209 и ПВ284 (ГОСТ 23178—78) первоначально были разработаны для пайки коррозионно-стойких сталей серебряными припоями, содержащими 40—45 %Ag при температуре 620—750 °С. Обнаружено, что при газопламенной пайке крупногабаритных изделий из латуней серебряными припоями с этими флюсами в паяных швах возникает значительное число пор и непропаев, снижающих герметичность соединений, а после удаления галтельных участков — ухудшающих микрогеометрию их поверхности. Подпайка дефектных мест увеличивает трудоемкость изготовления и снижает эксплуатационные характеристики изделий. В связи с этим разработан флюс «Салют 1» для газопламенной пайки латунных, в том числе крупногабаритных изделий.

Термографические, рентгеноструктурные и химические исследования флюсов ПВ209, «Салют 1» и их шлаков после переплава, после растекания их по латуни и меди, а также после пайки серебряными припоями показали, что в процессе нагрева флюса ПВ209 происходят реакции между его компонентами с расплавлением образующихся продуктов:

При температуре 400—445 °С плавятся KF и KBF4. При температуре 500 °С во флюсе образуются простые и комплексные соединения фторидов, которые при дальнейшем повышении температуры растворяются в жидком флюсе. При нагревании до 750 °С и выше образуются комплексные соединения боратов.

Растекание жидкого флюса по поверхности латуни происходит с образованием четырех зон, различающихся по фазовому составу. Во второй зоне содержится больше соединений бора, чем в первой, центральной зоне. В результате окислительно-восстановительных реакций и обесцинкования поверхностных слоев латуни на них появляется слой чистой меди.

Как показали рентгенограммы шлаков, образовавшихся на поверхности латуни, подвергнутой предварительно флюсованию, и оксидов, образовавшихся на неофлюсованной поверхности, окисление металла под слоем флюса происходит более интенсивно, чем без него. Медь в контакте с флюсом окисляется в 2 раза быстрее, чем латунь.

Взаимодействие жидкого припоя с паяемым металлом, флюсом и компонентов флюса между собой способствует увеличению продуктов реакции. Изменение состава флюса в процессе его растекания и затекания в зазор между деталями ухудшает условия смачивания паяемого металла жидким припоем, а выделение газообразных составляющих BF3, Н2 и других в зазоре при недостаточно быстром их дрейфе в галтельные участки паяных швов способствует образованию газовых пор в шве.

Процесс флюсования при газопламенной пайке, таким образом, является сложным: при повышении температуры происходят различные электрохимические и химические процессы взаимодействия компонентов флюсов между собой и с парами воды, с оксидами и паяемым металлом, продуктов реакции между собой.

В начале нагрева на поверхности паяемого металла оксиды, образовавшиеся под действием паров воды из пасты флюса и газового пламени, переходят в гидрооксиды меди и цинка: Zn(OH)2 и Сu(ОН)2. При нагреве выше 80°С гидрооксиды разлагаются, что приводит к нарушению сплошности оксидной пленки на металле:

Расплав флюса через несплошности в оксидной пленке растворяет под ней паяемый металл вследствие преимущественного протекания процесса по термодинамически менее равновесным местам. В результате этого, как и при растворении паяемого металла в жидком припое, оксидная пленка диспергирует и переходит в расплав флюса с образованием комплексных соединений фторидов цинка в результате обмена катионами между фторидами щелочных металлов и диссоциированными оксидами цинка. Дальнейшее повышение температуры ускоряет этот процесс; медь и цинк восстанавливаются, взаимодействуют с компонентами флюса и при температуре 600 °С образуют соединения, растворимые во флюсе.

При дальнейшем повышении температуры до 700 °С из расплава флюса испаряются борный ангидрид и соединения BF3(BOF2), что приводит к выпадению избыточных комплексных соединений меди и цинка, диссоциирующих вслед за этим с образованием простых фторидов. Эти фториды взаимодействуют с парами воды, гидролизуются с образованием оксидов и фтористого водорода. При 700—800 °С появляются комплексные соединения боратов типа К2В8О13, а ионы О 2- и катионы К + образуют высокоактивный оксид, который далее соединяется с борным ангидридом, а последний взаимодействует с оксидами меди и цинка, образуя с ними комплексные соединения. Все эти процессы активизируются в присутствии жидкого припоя. В результате этих процессов активность флюса понижается.

Читать еще:  Припой для пайки нержавеющей стали

Состав шлаков после газопламенной пайки латуни с флюсом ПВ209 зависит от массы паяемых узлов вследствие ее влияния на продолжительность нагрева, степень завершенности процесса флюсования и снижения активности флюса. В шлаках этого флюса при пайке мелких деталей содержатся соединения KZn4F7 и K3Zn2F7, которые отсутствуют в шлаках, образующихся при пайке более крупных и массивных изделий. Вместе с тем в шлаках появляются новые фториды K3CUF4, ZnF2, что характерно для более длительного процесса флюсования. Независимо от массы деталей в шлаках флюса ПВ209 после пайки латуни Л63 присутствуют оксиды ZnO и следы Cu20.

Различие процессов флюсования меди и латуни состоит в том, что в последнем случае комплексные соединения фторидов не образуются: при более высоких температурах получаются простые бораты цинка и меди, которые гидролизуются парами воды.

Таким образом, непропаи при газопламенной пайке массивных изделий из латуни обусловлены большей продолжительностью процесса их нагрева и окисления, после чего активность флюса оказывается недостаточной и окисленные участки препятствуют равномерному смачиванию паяемого материала жидким припоем.

При газопламенном нагреве газовая пористость в шве возникает главным образом вследствие воздействия BF3, а также водорода и частично азота, попадающих в зону пайки из газового пламени. При этом применение слабовосстановительного пламени способствует некоторому снижению пористости в швах.

Флюс «Салют 1», основу которого составляют соединения Н3ВО3—KF-2H20 с отношением 0,9, содержит также компоненты, препятствующие скоплению газов в зазоре, более эффективно защищающие паяемый металл от окисления и способствующие растворению оксидной пленки. Введение KNO3 во флюс «Салют 1» защищает металл от окисления и понижает число непропаев в шве. Установлено, что KNO3 защищает латунь в интервале температур 400—700 °С, но окисляет медь, начиная от 500 °С, и поэтому для высокотемпературной пайки меди флюс «Салют 1» не рекомендуется.

В процессе растекания состав флюса «Салют 1» не изменяется, газовые включения не образуются, что способствует затеканию припоя в зазор ровным фронтом; флюс имеет больший интервал температурно-временной активности, чем флюс ВП209.

При пайке с флюсом «Салют 1» величины зазора (0,01—0,5 мм) и нахлестки (2—5 мм) существенно не влияют на качество паяного соединения. Это обусловлено отсутствием в шлаках оксидов металлов. Температурный интервал активности флюса «Салют 1» при пайке с серебряными припоями составляет 650— 750 °С.

Остатки и шлаки коррозионно-активных флюсов-электролитов, имеющих рН 3+ из металла мигрируют через несплошности в слое оксида, обусловленные нестехиометричностью его состава, к границе раздела его с флюсом под действием поля напряжением

100 В при толщине пленки 100 нм. Оксидная пленка разрушается, когда стационарный потенциал алюминия ЕС1 в расплаве флюса становится более положительным, чем потенциал активации Еа. При потенциале Еа галогениды вытесняют ионы гидрооксида с поверхности алюминия, препятствуя его электрохимическому окислению. При этом химическое сродство алюминия к кислороду уменьшается и становится меньше, чем сродство алюминия к иону С1 — .

Автор: Администрация Общая оценка статьи: Опубликовано: 2012.02.03 Обновлено: 2020.03.04

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Пайка латунью: как и чем правильно паять латунь

Пайка латуни, позволяющая получать качественные и надежные соединения, – это технологический процесс, предполагающий использование газовой горелки, а также специального припоя. В качестве последнего применяется проволока, материалом изготовления которой может быть олово или сплав данного металла со свинцом. Если хорошо изучить особенности такого процесса, а также подготовить все необходимое оборудование и расходные материалы, то успешно выполнять его можно даже в домашних условиях.

Процесс спайки латунных деталей

Условия и область применения пайки

Прежде чем разбираться в вопросе о том, как паять латунь, следует хорошо изучить все особенности такого технологического процесса. При выполнении пайки, которая является одним из методов получения неразъемных соединений, в зазор, расположенный между соединяемыми деталями, вводится расплавленный припой, который и выступает в роли скрепляющего элемента.

Важным условием выполнения пайки является то, что припой, для расплавления которого пользуются газовой горелкой, должен плавиться при меньшей температуре, чем материал изготовления соединяемых деталей. Такая технология (в некоторых случаях она является единственно возможным способом получения неразъемного соединения) позволяет надежно спаять между собой даже разнородные металлы.

Схема пайки латунью с использованием газовой горелки

Совершенно неправильно сравнивать пайку с таким технологическим процессом, как сварка, который предполагает, что расплавляться будет не только специальная проволока-припой, но и металл соединяемых деталей. Именно благодаря тому, что при выполнении пайки основному температурному воздействию подвергается припой, характеристики соединяемых деталей и их целостность остаются неизменными. Такая особенность позволяет успешно использовать эту методику для соединения металлических деталей, которые отличаются даже очень небольшими размерами.

Между тем следует иметь в виду, что для выполнения пайки в качестве припоя используются более мягкие материалы, если сравнивать их с теми, которые применяются для формирования сварного шва. Это приводит к тому, что соединения, созданные при помощи пайки, изначально менее прочные и надежные, чем сварные швы. А в тех случаях, когда выполняется пайка латунью, из припоя в процессе интенсивного нагрева испаряется цинк, что приводит к пористости формируемого шва. Такая пористость металла значительно ухудшает качество и надежность соединения. При выполнении пайки деталей, изготовленных из латуни, большое значение имеет и их взаимное расположение. Такие детали лучше соединять не встык, а внахлест.

Для пайки в домашних условиях вполне можно обойтись ручной газовой горелкой с баллоном мощностью 1,8 кВт

Пайка металла как технология, позволяющая получать неразъемные соединения, занимает одну из лидирующих позиций, уступая по популярности только сварке. Без этой технологии практически не обойтись в электронной промышленности, где с ее помощью создают электропроводные соединения элементов различных приборов и устройств. Именно при помощи пайки чаще всего соединяются и наращиваются провода, по которым в дальнейшем будет проходить электрический ток.

Если говорить о наиболее распространенных сферах применения пайки, то к ним следует отнести:

  • формирование герметичных соединений труб, изготовленных из меди и ее сплавов, в том числе латуни (такие трубы используются преимущественно для комплектации холодильных и теплообменных установок);
  • крепление твердосплавных пластин к несущей части режущего инструмента;
  • соединение между собой деталей, значительно отличающихся по толщине.

На фото результат спайки латунной трубки и жиклера. Использовался припой флюсованный П14 и импортная горелка на чистом пропане

Используя паяльное оборудование и припой, также выполняют такую технологическую операцию, как лужение, которая позволяет создавать на металлических поверхностях надежное антикоррозионное покрытие.

В зависимости от того, при помощи припоя какого типа выполняется пайка, она может быть высоко- или низкотемпературной. Использование при выполнении пайки более тугоплавкого материала позволяет создавать соединения, которые могут эксплуатироваться при более высоких температурах. Между тем это сопряжено с некоторыми сложностями, которые связаны с необходимостью обращения к специальному оборудованию, позволяющему расплавить припой. Использование такого сплава, в частности, достаточно проблематично в домашних условиях, где для выполнения пайки чаще всего применяется обычная паяльная лампа.

Особенности технологии

Как в производственных, так и в домашних условиях приходится сталкиваться с необходимостью соединить при помощи пайки изделия, изготовленные из латуни. Связано это с тем, что данный сплав меди и цинка активно используется для производства элементов водопроводных и отопительных систем, а также множества других изделий.

Большое значение для получения качественного и надежного соединения латунных изделий при помощи пайки имеет правильный выбор флюса. Для успешного осуществления этого процесса не подойдет обычный флюс, в составе которого содержатся спирт и канифоль. Такой флюс из-за достаточно невысокой активности входящих в него компонентов не способен растворить окисную пленку, обязательно присутствующую на поверхности изделия из латуни. Именно поэтому для пайки изделий из латуни необходимо использовать более активный флюс, в качестве которого часто применяют хлористый цинк.

Состав и применение кислотных активных плюсов

Достаточно популярными флюсами, которые используются для выполняемой в соляных ваннах пайки латуни, являются бура и фтороборат калия. Такие флюсы, количество которых в растворе ванны, как правило, не превышает 5%, обеспечивают хорошее затекание расплавленного припоя в зазор между соединяемыми деталями.

Правильный выбор проволоки-припоя – еще одна важная задача, которую следует решить для того, чтобы получить качественное соединение деталей из латуни. Для пайки латунных изделий, которые в дальнейшем будут эксплуатироваться в газовой среде, можно использовать популярные типы припоев на основе сплавов серебра и фосфорной меди. Такие припои, кроме того, оптимально подходят для соединения изделий из латуни, содержащей значительное количество меди.

Марки и сферы применения припоев

В качестве припоя нередко используют и саму латунь, но при этом необходимо следить за тем, чтобы температура плавления присадочной проволоки не превышала аналогичный параметр самих соединяемых деталей. В тех случаях, когда при помощи пайки необходимо сформировать соединение повышенной надежности, используют твердые припои, которые, если сравнивать их с присадочными материалами мягкого типа, обладают более высокой прочностью.

Особое внимание вопросам выбора припоя и самой технологии выполнения пайки следует уделять в тех случаях, когда спаять между собой необходимо разнородные материалы. При этом следует учитывать, что такие материалы имеют разную температуру плавления, а также могут себя вести совершенно по-разному при нагреве. В частности, из латуни при интенсивном нагревании начинает испаряться цинк, что негативно отражается как на декоративных, так и на прочностных характеристиках формируемого соединения (оно приобретает пористую структуру).

В качестве несгораемой подложки можно использовать ведро с мелкой галькой

Избежать активного испарения цинка из состава латуни, подвергаемой нагреву в процессе выполнения пайки, позволяют определенные технологические приемы. Наиболее эффективным из таких приемов является использование флюса, который и будет выполнять защитную функцию, предотвращая испарение цинка из структуры латуни. Применение для выполнения пайки комбинированного припоя, в состав которого входит не только присадочный материал, но и флюс, – еще один эффективный способ, позволяющий избежать испарения цинка из латуни.

Правильно подбирая припой и технологию выполнения пайки, можно даже в домашних условиях соединять детали из такого сложного материала, как нержавейка. Следует иметь в виду, что для пайки деталей из нержавейки не подходит припой из латуни, для этого предназначены совсем другие материалы.

Краткая инструкция

Для того чтобы в домашних условиях выполнить качественную пайку латуни, недостаточно просто изучить теоретическую базу, желательно также посмотреть видео на эту тему. Необходимость в самостоятельном осуществлении такого процесса возникает нередко, ведь практически в каждом доме есть изделия из латуни, которые не застрахованы от поломок. Учитывая тот факт, что услуги квалифицированных специалистов недешевы, есть смысл изучить такой процесс как по представленным ниже рекомендациям, так и по видео, которые несложно найти в интернете.

Читать еще:  Что нужно для пайки микросхем?

Разумеется, что перед пайкой следует очистить детали

Итак, алгоритм пайки латуни выглядит следующим образом.

  • Тщательно очищенное место будущего соединения необходимо обработать флюсом, в состав которого входят бура и борная кислота (1:1), смешанные с водой.
  • После этого обработанное место соединения следует посыпать стружкой припоя.
  • Затем можно начинать прогрев формируемого шва при помощи газовой горелки или паяльной лампы. Следует внимательно следить за тем, чтобы не перегреть детали, что может привести к их деформации.
  • После того как припой расплавится под воздействием пламени газовой горелки, он заполнит зазор между деталями, обеспечив их надежное соединение.

Таким образом, выполнить пайку латуни не так уж сложно, главное – правильно подобрать расходные материалы и строго следовать указанным выше рекомендациям.

Пайка медных труб — оборудование и припои

Техника соединения медных труб очень легка и надежна. Наиболее распространенной и популярной техникой соединения труб — является пайка капиллярная. Основой этого способа является так называемый капиллярный эффект, его суть заключается в том, что при небольшом расстоянии между стенками двух смачиваемых поверхностей, жидкость за счет явления адгезии поднимется вверх по капилляру, преодолевая при этом силу тяжести. Этот эффект дает возможность припою равномерно распространяться по всей поверхности вне зависимости от положения трубы (можно, например, подавать припой снизу).

Температура необходимая для пайки меди должна превышать 425 градусов, но при этом быть ниже температуры при которой плавятся соединяемые металлы. Поверхностные силы адгезии, возникающие между расплавленным припоем и нагретыми поверхностями основных металлов — являются основной особенностью и основой технологии пайки. При этом припой распределяется в соединении под действием капиллярных сил.

Ни в коем случае нельзя путать пайку труб мягким припоем с пайкой припоем твердым, не смотря на то что операции очень близки и похожи. Нюанс соединения металлов при пайке с использованием мягкого припоя заключается в том, что пайка происходит при температуре ниже 425 °С.

Припои для пайки медных труб

Припои для фитингов

Качественные мягкие припои для соединения пайкой медных труб с медными, из красной бронзы и латунными фитингами в системах горячего и холодного водоснабжения в соответствии с DVGW, предписание GW 2, в соответствии с DIN EN 29453, в свой состав флюс не включают и применяются с соответствующей пастой РОСОЛ 3.

Стандартный припой

Применяется при проведении классических работ по пайке меди и латуни, белой жести, а также для лужения. Он не может быть применен для пайки электронных систем и питьевых водопроводов.

Твердые припои

Rothenberger ( Ротенбергер) РОЛОТ – это специальные твердые припои. Они особенно хорошо подходят для капиллярно-щелевой техники пайки, применяемой при монтаже медных труб в системах открытых и закрытых отопительных систем, в соответствии с DVGW, предписание GW 2, горячего и холодного водоснабжения, систем газоснабжения (жидкий, природный газ), а также для монтажа холодильных систем и систем кондиционирования и маслопроводов.

Припои Ротенбергер РОЛОТ специально разработаны для капиллярно-щелевой пайки медных трубопроводов, чей монтаж был осуществлен без использования фитингов. Серебросодержащие медно-фосфорные припои отличаются более высокими деформационными характеристиками и отлично подходят к использованию для пайки систем, подвергающихся высоким температурным и механическим нагрузкам.

Основные преимущества Ротенбергер РОЛОТ:
· Жаростойкие до 200° C.
· Не пенятся.
· При пайке соединений с латунью, меднооловянными сплавами, красной бронзой, медноцинковыми сплавами используется флюс LP 5.
· При пайке соединений меди с медью флюс не требуется.
· Экологически чисты, т.е. не наносят вреда окружающей среде, имеют улучшенную текучесть, не вызывают коррозию.

Качество и прочность пайки наиболее сильно зависит от операций пайки и физических параметров соединения, чем от припоя. Эти параметры являются определяющими при выборе наилучшего припоя для того или иного соединения.

Медно-фосфорные твердые припои были специально разработаны для пайки латуни, меди, бронзы и а так же их комбинаций.
Медно-фосфорные припои

При пайке бронзы или латуни применяют флюс для того, чтобы предотвратить образование окисного покрытия на основных металлах. При пайке медных соединений и меди, медно-фосфорные припои являются самофлюсующимися.

В связи с возникающей из-за фосфорной составляющей припоя хрупкостью соединения, применение медно-фосфорных припоев для пайки цветных металлов с содержанием никеля выше 10% становится невозможным. Так же не рекомендуется также использовать для пайки алюминиевой бронзы. Твердые серебряные припои не содержат фосфор, в отличие от медно-фосфорных сплавов .

Для паек с другими материалами применяют серебряные припои и флюсы.

Технология пайки медных труб

Для пайки одну трубку вставляют в другую так, чтобы она входила на длину не менее диаметра внутренней трубы. Между стенками внутренней и наружной труб должен быть зазор 0,025-0,125 мм.
Обе трубы нагревают пламенем горелки в месте соединения, равномерно распределяя теплоту. При этом сам припой нагревать не следует. Соединение не должно быть нагрето до температуры плавления металла, из которого изготовлены трубы. Применяют горелку соответствующего размера с несколько уменьшающимся пламенем. Перегрев соединения усиливает взаимодействие основного металла с припоем (то есть усиливает образование химических соединений). В итоге, такое взаимодействие отрицательно влияет на срок службы соединения .

Если вводить в зону пайки припой и пламя горелки одновременно, то соединение нагреется неудовлетворительно. Внутренняя труба достаточно не прогревается, а расплавленный припой не будет затекать в зазор между соединяемыми трубами
а если равномерно разогревать всю поверхность концов спаиваемых труб, то припой плавится под воздействием их теплоты и равномерно поступает в зазор соединения Трубы для пайки достаточно прогреты, если пруток твердого припоя плавится при контакте с ними. Для улучшения пайки, предварительно прогревают пруток припоя пламенем горелки .
Под воздействием капиллярных сил припой поступает в соединение. Этот процесс протекает хорошо, если поверхность металла чистая, выдержан оптимальный зазор между металлическими поверхностями, концы труб в зоне соединения достаточно нагреты (расплавленный припой течет по направлению к источнику теплоты) (рис. 5).

Соединение меди с латунью с помощью твердого медно-фосфорного припоя

Для соединения меди с латунью с помощью твердого медно-фосфорного припоя выполняют указанные выше операции такие же как и для соединения меди с медью.

Перед нагревом соединения наносят небольшое количество флюса, чтобы обеспечить смачивание припоя на поверхности латуни.
По завершении операции пайки тщательно удаляют остатки флюса горячей водой и щеткой. Большинство видов флюса вызывают коррозию и должны быть полностью удалены с поверхности соединения.

Соединение стали со сталью, медью, латунью или бронзой с помощью серебряного припоя

Для соединения стали со сталью, медью, латунью или бронзой с помощью серебряного припоя выполняют указанные выше операции для соединения меди с медью.

До нагрева, на соединение наносят флюс для последующего смачивания и перемещения расплавленного припоя в зазоры между соединяемыми деталями.
Нагревают пруток припоя и затем окунают его во флюс. Припой покрывается тонким слоем флюса, что предотвращает образование окисного покрытия на его поверхности (окиси цинка).
По завершении операции пайки тщательно удаляют остатки флюса тёплой водой.сварка медных труб

Технологический процесс пайки металлов

Процесс пайки латуней имеет свои особенности ввиду образования на поверхности окисной пленки, содержащей ZnO и испарения цинка при нагреве.

На латунях, содержащих до 15% Zn, окислы состоят из Cu20 с внедренными в нее частицами ZnO. В сплавах меди с большим содержанием цинка слой окисла состоит в основном из ZnO, удаление которого более сложно, чем Cu20.

Особенность низкотемпературной пайки латуней оловянно-свинцовыми и другими аналогичными припоями заключается в том, что удаление окисной пленки с поверхности латуней не обеспечивается канифольно-спиртовыми флюсами.

Для этого необходимо применять более активные флюсы. Например, при пайке латуней ЛС59-1-1, Л63 используют флюсы на основе хлористого цинка с добавками азотной кислоты.

Латунь медленнее, чем медь, растворяется в расплавах оловянно-свинцовых припоев, поэтому при пайке медленнее растут интерметаллидные слои, что должно положительно отражаться на механических свойствах паяных соединений.

Однако соединения, полученные при пайке латуни (Л63) оловянно-свинцовыми припоями, имеют более низкую прочность по сравнению с медью в тех же условиях. Например, предел прочности соединений меди встык, паянных оловом, равен 9 кгс/мм 2 , свинцом — 3,6 кгс/мм 2 , а соединений из латуни — 5,9 кгс/мм 2 и 2,6 кгс/мм 2 соответственно.

Снижение предела прочности соединений латуни связывают с пористостью в швах, которую объясняют испарением цинка и попаданием его паров в жидкий припой. Порообразование наблюдается после пайки как низкотемпературными, так и высокотемпературными припоями.

Высокотемпературную пайку латуни в печах с восстановительной или нейтральной атмосферой применяют ограниченно из-за испарения цинка. Пайка латуней в средах возможна только с предварительным флюсованием мест пайки.

Например латунь, содержащую до 3% свинца и кремния ЛКС80-3-2, удовлетворительно паяют в газовых средах медно-фосфористыми и серебряными припоями, но с обязательным использованием флюсов. Латунь паяют в печи без флюса только в том случае, если она предварительно покрыта слоем меди или никеля, предохраняющим от испарения цинка.

Латунные детали можно паять и в соляных ваннах в интервале температур 850-870°С. Для улучшения затекания припоя в зазор в раствор добавляют 4-5% флюса, содержащего фтороборат калия или буру.

При нагреве латунных деталей в пламени газовых горелок и в печах также происходит испарение и окисление цинка, что ухудшает растекание припоев. При пайке латуни горелкой в восстановительном пламени испарение и окисление цинка удается несколько уменьшить. При этом пористость в паяных швах уменьшается.

Читать еще:  Флюс для пайки алюминия с медью

Для пайки латуней, богатых медью, используют серебряные припои ПСр 72, ПСр 40, ПСр 45, ПСр 25, ПСр 12, а также латуни с низкой температурой плавления (припои типа ПМЦ 36; ПМК 48; ПМЦ54) и медно-фосфористые.

Для латуней, богатых цинком (ЛС59С, Л63, Л68), применяют припой ПСр 40. Фосфористые припои для них непригодны, так как при этом образуются малопластичные паяные соединения. Последнее объясняется тем, что в паяном шве образуются весьма хрупкие фосфиды цинка.

Для соединений, не подвергающихся вибрационным и динамическим нагрузкам, применяют припои ПМЦ 36 и ПМЦ 48.

Латуни интенсивно растворяются при пайке серебряными и медно-фосфористыми припоями. Поэтому паять их следует с высокими скоростями нагрева для сокращения контакта жидкого припоя и твердого металла. Латунь Л63 интенсивно растворяется в припоях ПСр 40, ПСр 45, ПСр 15, меньше в припоях ПСр 37,5 и ПСр 50 КД.

Пайка латуни

Латунь как материал известна достаточно давно. Хорошие физические и химические свойства позволили ей получить широкое распространение. У латунных деталей тоже периодически возникают дефекты (трещины, отверстия, изломы). Эти проблемы можно решить с помощью пайки. Чтобы результат получился высокого качества необходимо хорошо знать состав латуни, физические и химические характеристики, каким образом проводить пайку, какие припои и флюсы применяют для проведения таких работ.

Основные сведения о латуни

Латунь по своему составу бывает двойной или многокомпонентной. Всегда её основу составляют два металла: медь и цинк. В этом сплаве цинк выполняет функции основного легирующего компонента. Для придания различных свойств в её состав добавляют различные металлы: олово, свинец, марганец. Поэтому очень важно бывает знать, с каким составом латуни приходится работать. Это необходимо, чтобы определить условия и специфику пайки.

Современная латунь классифицируется по следующим показателям:

В зависимости от химического состава:

  • Двухкомпонентные сплавы. В его составе присутствует только два металла цинк и медь. Процент содержания каждого может быть различным. Такой тип маркируется заглавной буквой русского алфавита «Л» и числом. Число указывает, какой процент меди содержится в сплаве. Например, марка Л85 — в этом сплаве 85% меди и остальные 15% приходится на долю цинка.
  • Многокомпонентные. Их ещё называют специальные. Такие сплавы содержат большое количество добавок. Они маркируются двумя заглавными буквами и цифрами. Например, марка ЛА77-2. Она указывает, что состав включает 77% меди, 21% цинк и 2% алюминия. Поэтому очень часто специальные латуни получают своё название в зависимости от названия легирующего элемента с самым высоким процентом (алюминиевые, оловянные, никелевые, марганцевые и так далее).

По степени и качеству обработки:

  • Деформируемые. К ним относится латунь в виде проволоки, круглая трубка, лист и лента.
  • Литейные. Это арматура, готовые изделия, сделанные из латуни.

По содержанию цинка в сплаве:

  • Если содержание цинка находится в пределах от 5 до 20%, то такой сплав именуется красной латунью (томпак).
  • Если это процент колеблется от 21% и достигает 36%, такая латунь называется жёлтой.

Все марки латуни обладают схожими свойствами. Они хорошо поддаются обработке, имеют высокие антикоррозийные характеристики, обладают достаточной прочностью. При значительном понижении температуры сохраняют свою пластичность.

Эти свойства определили обширный круг применения латуни.

Применение латуни

Кроме перечисленных положительных свойств, латунь очень долговечный и надёжный сплав. Латунь применяется в следующих областях:

  • Изготовление трубопроводной арматуры (переходники, вентили, трубы).
  • Сантехнических устройств (краны, смесители умывальники)
  • Мебельной фурнитуры (руки, защёлки, замки, декоративные накладки).
  • Производство электротехнических деталей.
  • Производство сувениров.
  • Производство посуды.
  • Художественное литьё.
  • Производство ювелирных изделий. Ювелиры в основном применяют двухкомпонентные сплавы. Это может быть: желтая, красная, зелёная или золотистая латунь.

Пайка трубы из латуни

Припои и флюсы: классификация и методы выбора

Для получения хороших результатов пайки обязательно применяются добавки в виде флюсов и различных припоев.

Припоем называется определённый металл, который после его расплавления проникает в металлы, подготовленные для пайки.

Чтобы добиться надёжного контакта, марка припоя должна обладать температурой плавления, которая будет значительно ниже температуры плавления самой латуни. В то же время он должен обладать хорошей адгезией с латунью. Поэтому для паяния латуни применяют специальные припои.

Только в крайнем случае, если паяют детали, на которых не лежит большой ответственности за весь агрегат, и нет высоких требований к прочности, применяют обычные сплавы олова со свинцом.

Современные припои классифицируются следующим образом:

  • По температуре плавления. Они бывают мягкие с температурой плавления достигающей 400°C; полутвёрдые с температурой плавления олова и твёрдые. Температура плавления твердых припоев превышает 500 °C.
  • По типу расплавления. Припои, которые расплавляются в процессе пайки полностью или частично.
  • По способу получения припоя. Производятся готовые припои, и припои которые образуются в процессе пайки. Такая пайка называется контактно – реактивная.
  • По перечню химических элементов, добавленных в состав. Таких элементов применяется достаточно большое количество. От распространенных металлов цинка, олова, алюминия, до редкоземельных металлов галлия, индия, палладия.
  • По технологии изготовления припоя. Они бывают: проволочные, штампованные, катанные, литые измельчённые.
  • По виду припоя. Их производят в виде проволоки, готового порошка, в виде ленты и отдельных листов, в форме таблеток и готовых к применению закладных деталей.
  • По способу образования флюса. Припои делятся на две большие категории: флюсуемые и так называемые самофлюсующиеся.

Припои, так же как и латунь, маркируются заглавными буквами и цифрами. По маркировке можно определить для какой латуни предназначен конкретный припой. Например, если необходимо спаять деталь из латуни, в которой большой процент меди, то предлагается использовать припой марки ПСр12 или ПСр72. Этот припой в своём составе содержит большой процент серебра. Если в латуни присутствует большой процент цинка, то целесообразно использовать припой ПСр40. Поэтому, чтобы получить надёжное соединение после пайки, необходимо понимать, какие нагрузки возлагаются на ремонтируемую деталь. Если деталь стационарная и не несёт больших вибрационных нагрузок (например, элементы сантехники) можно смело применить припой мари ПМЦ. Если же необходимо обеспечить прочное соединение применяют специальные твёрдые припои, такие как L-CuP6. Этот припой имеет очень высокую температуру плавления — 730 °С.

Припои для латуни

Чтобы правильно выбрать марку припоя, можно воспользоваться следующим методом:

  • Определить температуру плавления деталей, которые планируется спаять.
  • Уточнить коэффициент температурного расширения. У латуни, которую планируется паять и припоя он должны быть очень близким.
  • После пайки припой не должен снижать механические характеристики отремонтированной детали.
  • Припой должен образовывать с основной латунной деталью гальваническую пару. Если этого не обеспечить будет быстро происходить процесс коррозии.
  • Свойства припоя должны соответствовать всем техническим и эксплуатационным характеристикам.
  • Припой должен обеспечивать в процессе пайки хорошую смачиваемость основной детали.

Флюсом называют специальное вещество, которое позволяет подготовить поверхность металла, то есть, снять с неё образующийся налёт окисла, жирные и водяные пятна. Без применения флюса качественно спаять латунную деталь невозможно. Флюсы подбираются в зависимости от химического состава латуни.

Опыт показывает, чтобы качественно спаять детали из распространенных марок латуни ЛС59 и Л63 достаточно иметь флюс, состоящий из хлористого цинка, растворённого в борной кислоте. Если необходимо спаять латунь, в составе которой имеется свинец и кремний (например, марка ЛКС80), то необходим флюс, имеющий соединения фтора и калия. Их также растворяют в борной кислоте, или буры. Подобный флюс для пайки можно приготовить и в домашних условиях, используя соответствующие элементы в требуемом процентном соотношении.

Флюс-паста для пайки латуни

Сегодня промышленность предлагает готовые флюсы для паяния латуни. К ним относятся: флюс «Бура»; флюсы ПВ-209 и ПВ-209Х.

Способы пайки

Процесс паяния латуни обладает определённой спецификой. Латунь нагревается и происходит испарение элементов горячего цинка. В этот момент образовывается оксидная плёнка, которая достаточно сложно удаляется с поверхности детали и тем самым ухудшается качество пайки. Обычно латунь паяют двумя способами: с помощью паяльника и с помощью специальной горелки

Пайка с помощью паяльника

Чтобы качественно спаять латунь паяльник должен обладать мощностью не ниже 1000 Вт. Такой паяльник обеспечит необходимую температуру нагрева самих деталей и припоя. Она должна равняться 500ºС и выше. Низкотемпературная пайка латуни возможна только в том случае если в ней имеется высокий процент содержания меди.

Пайка латуни паяльником

Наиболее удобным является паяние с помощью паяльной станции, которая имеет регулировку температуры жала паяльника. Такая регулировка позволяет установить оптимальный режим нагрева. Дело в том, что во время паяния необходимо избегать ненужного перегрева зоны паяния. Оптимальной считается температура нагрева жала паяльника до 350°С.

Пайка с применением газовой горелки

Поставленную задачу по паянию латуни можно решить, применяя небольшую горелку. Латунную деталь размещают на любом жаропрочном материале, он должен выдерживать высокие температуры. Для этих целей применяют асбестовые пластины.

Пайка латуни газовой горелкой

Детали, которые необходимо спаять, размещают на этой пластине и совмещают друг с другом. Подготовка к паянию такая же, как и при паянии паяльником. Далее припой нарезают в виде мелкой металлической крошки или стружки и посыпают ею стык деталей. Затем регулируют величину пламени горелки, и подводят его в зону паяния.

Сначала необходимо произвести не сильный разогрев участка паяния, чтобы произошло прихватывание припоя к поверхности латуни. После этого приступают к полному нагреву до тех пор, пока на поверхности латуни не появится характерный красный цвет. При правильно отрегулированной горелке температура в зоне паяния достигает 700 °С. После остывания необходимо удалить наплывы и остатки флюса.

Итак, чтобы получить добротные результаты пайки латунных деталей необходимо правильно подобрать припой. Следить за чистотой стержня паяльника и степенью его прогрева. Ни когда не стоит начинать пайку, если паяльник не нагрелся до требуемой температуры. Тщательно подготовить поверхности латунной детали, которые планируется спаивать (протереть от грязи и пыли и обезжирить). Внимательно следить за степенью нагрева рабочей зоны паяемых деталей.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector