1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что представляет собой металлическая кристаллическая решетка?

Металлические кристаллические решетки — материалы презнетации

Описание презентации по отдельным слайдам:

Металлическая кристаллическая решетка. Презентацию подготовила ученица 11-1 класса Александра Давыдова

Химическая связь и строение вещества. Разные вещества имеют разное строение. Только благородные газы – гелий Не, неон Ne, аргон Ar, криптон Kr, ксенон Xe и радон Rn- из-за высокой устойчивости их электронных структур существуют в виде свободных (изолированных) атомов. Все другие вещества состоят из связанных атомов. Химическая связь – электростатические силы, которые обусловливают связь между атомами.

Химическая связь и строение вещества. Результатом связывания атомов является образование более сложных структур – молекул, молекулярных ионов, свободных радикалов, а также ионных, атомных и металлических кристаллических решеток. Существование этих структур обусловлено различными типами химической связи.

Типы химической связи. Химическая связь ковалентная ионная металлическая водородная Является причиной образования большинства молекул, молекулярных ионов, свободных радикалов и атомных кристаллических решеток. Существует внутри молекул отдельных веществ, возникает между молекулами некоторых веществ Обусловливает существование молекул ионных соединений и ионных кристаллических решеток Существует в простых веществах- металлах

Металлическая связь. Большинство металлов характеризуется небольшим числом электронов на внешнем энергетическом уровне. Т.е. число вакантных орбиталей у них значительно больше числа валентных электронов. Все металлы в твердом состоянии имеют металлическую решетку. При ее образовании атомы сближаются до такой степени, что их вакантные орбитали начинают перекрываться. Валентный электрон при этом может относительно свободно перемещаться с орбитали своего атома на свободную и близкую по энергии орбиталь соседних атомов. Потеряв электрон, исходный атом теряет свою электронейтральность и превращается в катион, возможен и обратный процесс : M — ne M атом катион o n+

Металлическая связь. В узлах кристаллической решетки металла наряду с нейтральными атомами присутствуют катионы. Электроны, потеряв связь с атомами, могут относительно свободно перемещаться по всему объему металла, связывая ионы и нейтральные атомы металла в единое целое. Связь между всеми положительно заряженными ионами металлов и свободными электронами в кристаллической решетке металлов называется металлической.

Схема кристаллической решетки металлов. + + + + + + + + + + + В узлах кристаллической решетки металлов находятся положительные ионы и атомы металлов, а между узлами – электроны. Электроны становятся общими и свободно перемещаются по решетке, их называют свободными электронами или «электронным газом»

Металлическая связь и физические свойства металлов. Металлическая связь обусловливает важнейшие физические свойства металлов: — электропроводность; — теплопроводность; — пластичность; — металлический блеск.

Пластичность. Пластичность металлов выражается в их способности деформироваться под действием механической нагрузки. Это важнейшее свойство металлов лежит в основе их обработки давлением ( ковки, прокатки и др.), вытягивания из металлов проволоки под действием силы. Пластичность металла объясняется тем, что под внешним воздействием одни слои ионов в кристаллах легко смещаются, как бы скользят друг относительно друга без разрыва связи между ними. Кованая решетка Михайловского сада Санкт-Петербург

Электропроводность. Электропроводность металлов обусловлена наличием в них совокупности подвижных электронов, которые под действием электрического поля приобретают направленное движение. Все металлы являются электрическими проводниками первого рода, т.е. обладают электронной проходимостью. Электропроводность с повышением температуры уменьшается, т.к. в результате тепловых колебаний атомов в узлах кристаллической решетки сопротивление направленному движению электронов возрастает. Лучшими проводниками электрического тока являются серебро и медь, немного уступает алюминий. Хуже всего электрический ток проводят марганец, свинец и ртуть, а также вольфрам и некоторые тугоплавкие металлы.

Электрическое сопротивление вольфрама настолько велико, что он начинает светиться при прохождении через него электрического тока. Это свойство вольфрама используют для изготовления нитей в лампах накаливания Электропроводность. Фонарь на Испанской лестнице в Риме.

Теплопроводность. Теплопроводность металла объясняется высокой подвижностью электронов. Которые, сталкиваясь с колеблющимися в узлах решетки атом-ионами металлов обмениваются с ними энергией. С повышением температуры эти колебания ионов с помощью электронов передаются другим ионам и температура металла быстро выравнивается.

Металлический блеск. Гладкая поверхность металла или металлического изделия имеет металлический блеск, который является результатом отражения световых лучей. Высокой светоотражательной способностью обладают ртуть, серебро, палладий и алюминий. В порошке металлы , за исключением магния и алюминия теряют блеск, приобретая черную или серую окраску. Музей Ватикана. «Мир»

Способность к образованию сплавов. Металлическая химическая связь и металлическая кристаллическая решетка характерны не только для чистых металлов, но и для их сплавов. Металлические сплавы обладают нередко более полезными свойствами, чем составляющие их чистые металлы – повышенной прочностью, коррозионной стойкостью и твердостью( дюралюминий). Медь плохо поддается литью, а оловянная бронза ( сплав меди и олова) имеет прекрасные литейные качества, из нее отливают художественные изделия. Фрагмент бронзового подножия Александровского столба, Санкт-Петербург

Энергия кристаллических решеток некоторых металлов. Металл – энергия кристаллической решетки, кДж/моль Энергия металлической кристаллической решетки – количество энергии, которое необходимо затратить на разрушение кристалла, содержащего 1 моль атомов данного металла. Наибольшей энергией обладают решетки, состоящие из небольших ионов с большим зарядом ядра атома. Сверху вниз в подгруппе энергия уменьшается, так как увеличивается размер иона. В периоде же слева направо кристаллические решетки становятся более прочными из-за увеличения заряда катиона металла.

Литература. О.С.Габриелян «Химия 11 класс базовый уровень», учебник, ООО Дрофа 2008 О.С. Габриелян, И.Г. Остроумов «Химия» Материалы для подготовки к ЕГЭ, ООО Дрофа 2008 А.С. Егоров « Репетитор по химии» ООО «Феникс», 2009 Н.Е.Кузьменко, В.В. Еремин, В.А. Попков « Учебное пособие по химии» школьный курс, ООО «Мир и образование» 2005 г. Фото из семейного архива.

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы

При организации образовательного процесса педагогу важно создание оптимальных условий для самореализации ребенка, максимального раскрытия его творческого потенциала.

Компетентностный подход к уровню подготовки обучающихся предполагает создание педагогом учебных ситуаций как условия для формирования у обучающихся опыта самостоятельного решения познавательных, коммуникативных, организационных задач.

Личностно-деятельностный подход предполагает организацию деятельности, в которой отбор содержания и организация образовательного процесса должны осуществляться в соответствии с потребностями и интересами детей на основе учета психофизиологических особенностей учащихся.

  • Тележинская Елена ЛеонидовнаНаписать 1410 18.04.2018

Номер материала: ДБ-1472613

  • Химия
  • 8 класс
  • Презентации

38 000 репетиторов из РФ и СНГ

Занятия онлайн и оффлайн

Более 90 дисциплин

    18.04.2018 135
    18.04.2018 158
    18.04.2018 241
    17.04.2018 490
    16.04.2018 580
    15.04.2018 195
    15.04.2018 207
    14.04.2018 635

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако редакция сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение редакции может не совпадать с точкой зрения авторов.

Читать еще:  Торцеватель для металлических труб своими руками

Кристаллическая решетка

Кристаллическая решётка — присущее находящемуся в кристаллическом состоянии веществу правильное пространственное расположение атомов (ионов, молекул), характеризующееся периодической повторяемостью в трёх измерениях.
Нельзя смешивать понятия кристаллическая структура и кристаллическая решетка. Первый термин относится к реальной картине атомного строения кристалла, второй — к геометрическому образу, описывающему трехмерную периодичность в размещении атомов (или иных частиц) в кристаллическом пространстве. Различие между ними вытекает хотя бы из того, что существует огромное количество разнообразных кристаллических структур, которым соответствует всего лишь 14 решеток Бравэ. Необходимым следствием этого является то, что одна и та же ячейка Бравэ может описывать различные на первый взгляд кристаллические структуры.
Благодаря такой периодичности для описания кристаллической структуры достаточно знать размещение атомов в элементарной ячейке. Её повторением путём параллельных дискретных переносов (трансляций) образуется вся структура кристалла. В соответствии с симметрией кристалла его элементарная ячейка имеет форму косоугольного или прямоугольного параллелепипеда, трехугольной, четырехугольной или шестиугольной призмы, куба. Наличием у кристаллов кристаллической решётки объясняются анизотропия свойств кристаллов, плоская форма их граней, постоянство углов и другие законы кристаллографии. Изучение геометрии и измерение углов кристалла даёт информацию о параметрах углов его элементарной ячейки. Кристаллическая структура не является статической конструкцией. Образующие её атомы или молекулы колеблются около определённых положений равновесия. Характер этих колебаний зависит от симметрии, координации атомов, энергии межатомных связей. С повышением температуры колебания частиц усиливаются, что приводит к разрушению кристаллической решётки и к переходу вещества из кристаллического в жидкое состояние.
Структура реального кристалла всегда отличается от идеальной схемы его кристаллической структуры. Грани кристаллов соответствуют плоским сеткам, рёбра — рядам, а вершины углов — узлам пространственной решётки. Пространственная решётка имеет бесконечное множество плоских сеток, рядов и узлов. Но реальным граням могут соответствовать лишь те плоскости кристаллической решётки, которые имеют наибольшую ретикулярную плотность, т.е. на которых на единицу площади приходится наибольшее число составляющих её частиц (атомов, ионов). Таких плоских сеток сравнительно немного, поэтому кристаллы имеют ограничения в отношении числа возможных граней и простых форм.
Помимо всегда имеющих место тепловых колебаний атомов, трансляционно «равные» атомы могут в действительности отличаться по атомному номеру (изоморфизм) или по массе ядра. Кроме того, в реальном кристалле всегда имеются многочисленные разного рода дефекты: примесные атомы, вакансии, дислокации и проч., что приводит к формированию блочно-мозаичного строения или к расщеплению кристалла во время роста. Более подробное рассмотрение понятий «структура» и «решетка» проведено в обзоре Ю.К.Егорова-Тисменко

  • Шубников А. В., Флинт Е. Е., Бокий Г. Б., Основы кристаллографии. М.— Л., 1940.
  • Белов Н. В. Структура ионных кристаллов и металлических фаз, М., 1947.

Кристаллические решетки

9 класс

В течение двух лет я разрабатываю и применяю на практике в 8–11-х классах уроки – учебные ситуации (технология коллективно-индивидуальной мыслительной деятельности). Учебная ситуация состоит из трех этапов: целевого, поискового и рефлексивного пространства. Все они между собой функционально взаимосвязаны.

I этап – организация целевого пространства

1. Создание творческих микрогрупп.
2. Ввод в ситуацию, постановка проблемы.
3. Выбор средств, позволяющих реализовывать цели.

II этап – организация поискового пространства

1. Определение способов совместной деятельности.
2. Реализация программы общей деятельности.
3. Обсуждение результатов решения проблемы в микрогруппах.
4. Вывод научной нормы.

III этап – организация рефлексивного пространства

1. Осознание метода деятельности.
2. Осознание затруднений, ошибок.
3. Постановка и выход на новую проблему.

Все учебные ситуации строятся на постановке проблемы. Учащиеся решают эту проблему на уроке с помощью различных средств и приходят к самостоятельным выводам. Такие уроки направлены на развитие учебных умений и навыков, умение работать с литературой, выделять главное, обобщать и делать выводы, строить аргументированный рассказ. Уроки самостоятельного и совместного освоения материала имеют большое воспитательное значение. Они способствуют формированию и развитию у учащихся таких нравственных качеств, как коллективизм, взаимовыручка, дружба.

Цели. Познакомить учащихся с понятием «кристаллическая решетка», изучить типы кристаллических решеток и показать зависимость физических свойств веществ от типа кристаллической решетки.

Оборудование и реактивы. Магнитофон, модели кристаллических решеток; колба с кислородом, вода, йод, оксиды, соли, кислоты; на столах учащихся – кварц, сера, флюорит CaF2, поваренная соль, графит, медная проволока.

I этап – организация целевого пространства

Эпиграф. «Познать сущее нельзя извне, можно только изнутри» (Н.Бердяев).

УЧИТЕЛЬ. Как разнообразен мир музыки, так разнообразен и мир веществ. Рано или поздно каждый человек задает себе вопросы: «Почему воздух всегда – зимой и летом – газообразный?», «Почему в чайнике вода закипает и превращается в пар, а железо при тех же условиях остается твердым?», «Почему газы летают в пространстве, а жидкости текут и льются?»

Демонстрация веществ, различающихся по агрегатному состоянию (газ, жидкость, твердое вещество), плотности, цвету, назначению, составу (простые и сложные вещества).

О б с у ж д е н и е в г р у п п а х. Каждая группа готовит сведения о веществах, которые объединяет какая-то общая характеристика (хрупкость, легкость, прозрачность). Потом они рассказывают подготовленный материал у доски.

УЧИТЕЛЬ. Какое вещество на Земле находится сразу в трех состояниях? Вспомните физику и обсудите, от чего зависит агрегатное состояние воды.

О б с у ж д е н и е в г р у п п а х. Учащиеся вспоминают, что агрегатное состояние веществ зависит от их химической природы. Так, при комнатной температуре все металлы (кроме ртути) твердые, а среди неметаллов половина – газы. Вещества с температурой кипения ниже окружающей температуры находятся в газообразном состоянии. Вода кипит при 100 °С, а превращается в лед и плавится при 0 °С.

Вывод. Агрегатное состояние воды (и других веществ) зависит от температуры, при которой находится вещество. Агрегатное состояние вещества зависит также от характера его частиц (атомов, молекул или ионов), их взаимного расположения.

УЧИТЕЛЬ. Где более упорядоченно расположены частицы относительно друг друга – в газах, жидкостях или в твердых веществах?

(О т в е т. В твердых веществах.)

Твердые вещества делятся на аморфные (стекло, резина и др.) и кристаллические (лед, кварц, железо и др.).

Чтобы сформулировать проблему нашего урока, обратимся к эпиграфу. На уроке нам предстоит понять и изучить кристаллическое строение веществ, разобраться, чем они отличаются от аморфных веществ.

II этап – организация поискового пространства

УЧИТЕЛЬ. Попробуем заглянуть внутрь вещества.

Лабораторная работа в группах

Задание 1. Рассмотрите под лупой различные вещества: кварц SiO2, серу S, флюорит СаF2. Опишите, что вы видите.

Читать еще:  Стеллаж из металлического профиля своими руками
Льдистый кварц
Кристаллы серы

(Ответ. Кристаллы кварца иглистые, имеют плоские грани, они похожи на лед. У серы ромбические кристаллы желтого цвета. Кристаллы флюорита темные, непрозрачные.)

Флюорит СaF2
Кристаллическая структура NaCl:
1 – хлорид-ион Cl–;
2 – катион натрия Na +

УЧИТЕЛЬ. Пользуясь учебником (Минченков Е.Е. и др. «Химия-9», § 7, с. 42) и словарем С.И.Ожегова, ответьте на вопрос «Что такое кристаллы?»

О б с у ж д е н и е в г р у п п а х. Учащиеся отмечают, что кристаллы – это твердые вещества, в которых атомы, молекулы или ионы располагаются в определенном порядке, образуя кристаллическую решетку. Кристаллы имеют разную форму – куба, параллелепипеда, призмы и др.

Вывод. Кристалл – это твердое вещество, имеющее определенное упорядоченное строение.

УЧИТЕЛЬ. Почему кристаллы различных веществ разнообразны по форме?

О б с у ж д е н и е в г р у п п а х. Учащиеся высказывают предположение, что форма кристаллов зависит от типа их кристаллической решетки.

Вывод. Разные по форме кристаллы имеют различные кристаллические решетки. Кристаллическая решетка – это упорядоченное расположение частиц в кристалле.

Лабораторная работа в группах

Задание 2. Исследуйте макет кристаллической решетки выданного вам вещества. Прочитайте текст из учебника (Минченков Е.Е.и др. «Химия-9», § 7, с. 42). Заполните таблицу «Кристаллические вещества» (см. с. 36).

Расскажите о кристаллической решетке выданного вам вещества. Сделайте вывод, какими свойствами обладают вещества с такой кристаллической решеткой. Какие вещества имеют такую же кристаллическую решетку, как у выданного вам вещества?

Каждая группа пишет отчет по своему веществу, заполняя таблицу (в тетради и на доске), и делает вывод.

Поваренная соль NaCl
Кристаллическая структура графита

Вывод. В кристаллических веществах атомы, молекулы или ионы располагаются в определенном порядке. В зависимости от природы частиц в узлах решетки различают ионные, атомные, молекулярные и металлические кристаллические решетки. Физические свойства твердых веществ определяются их строением в кристаллическом состоянии.

III этап – рефлексия

Проводится кодированный диктант. Вместо слова «да» учащиеся пишут цифру 1, а вместо слова «нет» ставят 0.

1. Нафталин – легкоплавкое, кристаллическое вещество, потому что имеет молекулярную кристаллическую решетку.

2. Слово «кристалл» пишется с одной буквой «л».

3. Вещества с атомной кристаллической решеткой – твердые, тугоплавкие, нелетучие.

4. Для веществ с металлической кристаллической решеткой характерным свойством является хрупкость.

5. Кристаллическая решетка серы состоит из атомов серы.

(Ответ. 1-0-1-0-0.)

Контроль правильности выполнения диктанта проводят методом взаимопроверки.

Домашнее задание. Смоделировать кристаллическую решетку любого вещества.

Л и т е р а т у р а

Рудзитис Г.Е., Фельдман Ф.Г. Химия. 8 класс. М.: Просвещение, 1999; Шелинский Г.И. Химия.
8 класс. СПб.: Специальная литература, 2001; Минченков Е.Е., Цветков Л.А., Зазнобина Л.С. Химия. 9 класс. М.: Школьная пресса, 2000; Ожегов С.И., Шведова Н.Ю. Толковый словарь русского языка. М.: АЗЪ, 1995.

мтомд.инфо

Строение металлов. Атомно-кристаллическое строение металлов. Кристаллическая решетка металлов.

Раздел:Материаловедение. Металловедение.

В огромном ряду материалов, с незапамятных времен известных человеку и широко используемых им в своей жизни и деятельности, металлы всегда занимали особое место. Подтверждение этому: и в названиях эпох (золотой, серебряный, бронзовый, железный века), на которые греки делили историю человечества: и в археологических находках металлических изделий (кованые медные украшения, сельскохозяйственные орудия); и в повсеместном использовании металлов и сплавов в современной технике. Причина этого — в особых свойствах металлов, выгодно отличающих их от других материалов и делающих во многих случаях незаменимыми.

Металлы – один из классов конструкционных материалов, характеризующийся определенным набором свойств:

  • «металлический блеск» (хорошая отражательная способность);
  • пластичность;
  • высокая теплопроводность;
  • высокая электропроводность.

Строение металлов. Атомно-кристаллическое строение металлов.

Данные свойства обусловлены особенностями строения металлов. Согласно теории металлического состояния, металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны. На последнем уровне число электронов невелико и они слабо связаны с ядром. Эти электроны имеют возможность перемещаться по всему объему металла, т.е. принадлежать целой совокупности атомов.

Таким образом, пластичность, теплопроводность и электропроводность обеспечиваются наличием «электронного газа».

Кристаллическая решетка металлов

Все металлы, затвердевающие в нормальных условиях, представляют собой кристаллические вещества, то есть укладка атомов в них характеризуется определенным порядком – периодичностью, как по различным направлениям, так и по различным плоскостям. Этот порядок определяется понятием кристаллическая решетка. Другими словами, кристаллическая решетка это воображаемая пространственная решетка, в узлах которой располагаются частицы, образующие твердое тело.

Элементарная ячейка – элемент объема из минимального числа атомов, многократным переносом которого в пространстве можно построить весь кристалл. Элементарная ячейка характеризует особенности строения кристалла. Основными параметрами кристалла являются:

  • размеры ребер элементарной ячейки. a, b, c – периоды решетки – расстояния между центрами ближайших атомов (в одном направлении выдерживаются строго определенными);
  • углы между осями (α, β, χ);
  • координационное число (К) указывает на число атомов, расположенных на ближайшем одинаковом расстоянии от любого атома в решетке;
  • базис решетки количество атомов, приходящихся на одну элементарную ячейку решетки;
  • плотность упаковки атомов в кристаллической решетке – объем, занятый атомами, которые условно рассматриваются как жесткие шары. Ее определяют как отношение объема, занятого атомами к объему ячейки (для объемно-центрированной кубической решетки – 0,68, для гранецентрированной кубической решетки – 0,74).

Схема кристаллической решетки

Классификация возможных видов кристаллических решеток была проведена французским ученым О. Браве, соответственно они получили название «решетки Браве». Всего для кристаллических тел существует четырнадцать видов решеток, разбитых на четыре типа:

  • примитивный – узлы решетки совпадают с вершинами элементарных ячеек;
  • базоцентрированный – атомы занимают вершины ячеек и два места в противоположных гранях;
  • объемно-центрированный – атомы занимают вершины ячеек и ее центр;
  • гранецентрированный – атомы занимают вершины ячейки и центры всех шести граней.

Типы кристаллических решеток

Рис. 2: а – объемно-центрированная кубическая; б– гранецентрированная кубическая; в – гексагональная плотноупакованная

Основными типами кристаллических решеток являются:

  1. Объемно — центрированная кубическая (ОЦК) (рисунок 2, позиция а), атомы располагаются в вершинах куба и в его центре (V, W, Ti, Feα)
  2. Гранецентрированная кубическая (ГЦК) (рисунок 2, позиция б), атомы рассполагаются в вершинах куба и по центру куждой из 6 граней (Ag, Au, Feγ)
  3. Гексагональная, в основании которой лежит шестиугольник:
      — простая – атомы располагаются в вершинах ячейки и по центру 2 оснований (углерод в виде графита);
      — плотноупакованная (ГПУ) – имеется 3 дополнительных атома в средней плоскости (цинк).

Что представляет собой металлическая кристаллическая решетка?

Последнее обновление

4 апреля 2020г.

Образование молекул из атомов приводит к выигрышу энергии, так как в обычных условиях молекулярное состояние устойчивее, чем атомное.

Чтобы рассматривать данную тему необходимо знать:

Читать еще:  Качели металлические на подшипниках

Электроотрицательность — это способность атома смещать к себе общую электронную пару. (Самый электроотрицательный элемент — фтор.)

Кристаллическая решетка — трехмерное упорядоченное расположение частиц.

Различают три основных типа химических связей: ковалентную, ионную и металлическую.

Металлическая связь характерна для металлов, которые содержат небольшое количество электронов на внешнем энергетическом уровне (1 или 2, реже 3). Эти электроны легко теряют связь с ядром и свободно перемещаются по всему куску металла, образуя «электронное облако» и обеспечивая связь с положительно заряженными ионами, образовавшимися после отрыва электронов. Кристаллическая решетка — металлическая. Это обуславливает физические свойства металлов: высокую тепло- и электропроводность, ковкость и пластичность, металлический блеск.

Ковалентная связь образуется за счет общей электронной пары атомов неметаллов, при этом каждый из них достигает устойчивой конфигурации атома инертного элемента.

Если связь образуют атомы с одинаковой электроотрицательностью, то есть разница электроотрицательности двух атомов равна нулю, электронная пара располагается симметрично между двумя атомами и связь называется ковалентной неполярной.

Если связь образуют атомы с разной электроотрицательностью, причем разница в электроотрицательности двух атомов лежит в интервале от нуля примерно до двух (чаще всего это разные неметаллы), то общая электронная пара смещается к более электроотрицательному элементу. На нем возникает частично отрицательный заряд (отрицательный полюс молекулы), а на другом атоме — частично положительный заряд (положительный полюс молекулы). Такая связь называется ковалентной полярной.

Если связь образуют атомы с разной электроотрицательностью, причем разница в электроотрицательности двух атомов больше двух (чаще всего это неметалл и металл), то считают, что электрон полностью переходит к атому неметалла. В результате этот атом становится отрицательно заряженным ионом. Атом, отдавший электрон, — положительно заряженным ионом. Связь между ионами называется ионной связью.

Соединения с ковалентной связью имеют два типа кристаллических решеток: атомные и молекулярные.

В атомной кристаллической решетке в узлах находятся атомы, соединенные прочной ковалентной связью. Вещества с такой кристаллической решеткой имеют высокие температуры плавления, прочны и тверды, практически нерастворимы в жидкостях. например, алмаз, твердый бор, кремний, германий и соединения некоторых элементов с углеродом и кремнием.

В молекулярной кристаллической решетке в узлах находятся молекулы, соединенные слабым межмолекулярным взаимодействием. Вещества с такой решеткой имеют малую твердость и низкие температуры плавления, нерастворимы или малорастворимы в воде, из растворы практически не проводят электрический ток. Например, лед, твердый оксид углерода (IV) твердые галогеноводороды, твердые простые вещества, образованные одно-(благородные газы), двух- (F2, Cl2, Br2, I2, H2, O2, N2), трех-(О3), четырех- (Р4), восьми- (S8) атомными молекулами. Большинство кристаллических органических соединений имеют молекулярную решетку.

Соединения с ионной связью имеют ионную кристаллическую решетку, в узлах которой чередуются положительно и отрицательно заряженные ионы. Вещества с ионной решеткой тугоплавки и малолетучи, имеют сравнительно высокую твердость, но хрупки . Расплавы и водные растворы солей и щелочей проводят электрический ток.

Примеры заданий

1. В какой молекуле ковалентная связь «элемент — кислород» наиболее полярна?

Решение:

Полярность связи определяется разностью электроотрицательности двух атомов (в данном случае элемента и кислорода). Сера, азот и хлор находятся рядом с кислородом, следовательно их электроотрицательности отличаются незначительно. И только водород находится на отдалении от кислорода, значит разница в электроотрицательности будет большая, и связь будет наиболее полярна.

Ответ: 4)

2. Водородные связи образуются между молекулами

1) метанола 2) метаналь 3) ацетилена 4) метилформиата

Решение:

В составе ацетилена вообще нет сильноэлектроотрицательных элементов. Метаналь Н2СО и метилформиат НСООСН3 не содержат водорода, соединенного с сильноэлектроотрицательным элементом. Водород в них соединен с углеродом. А вот в метаноле СН3ОН между атомом водорода одной гидроксогруппы и атомом кислорода другой молекулы возможно образование водородной связи.

Кристаллические решетки в химии

Содержание:

Определение кристаллической решетки

Как мы знаем, все материальные вещества могут пребывать в трех базовых состояниях: жидком, твердом, и газообразном. Правда есть еще состояние плазмы, которое ученые считают ни много ни мало четвертым состоянием вещества, но наша статья не о плазме. Твердое состояние вещества потому твердое, так как имеет особую кристаллическую структуру, частицы которой находятся в определенном и четко заданном порядке, создавая, таким образом, кристаллическую решетку. Строение кристаллической решетки состоит из повторяющихся одинаковых элементарных ячеек: атомов, молекул, ионов, других элементарных частиц, связанных между собой различными узлами.

Виды кристаллических решеток

В зависимости от частиц кристаллической решетки существует четырнадцать типов оной, приведем наиболее популярные из них:

  • Ионная кристаллическая решетка.
  • Атомная кристаллическая решетка.
  • Молекулярная кристаллическая решетка.
  • Металлическая кристаллическая решетка.

Далее более подробно опишем все типы кристаллической решетки.

Ионная кристаллическая решетка

Главной особенностью строения кристаллической решетки ионов являются противоположные электрические заряды, собственно, ионов, вследствие чего образуется электромагнитное поле, определяющее свойства веществ, имеющих ионную кристаллическую решетку. А это тугоплавкость, твердость, плотность и возможность проводить электрический ток. Характерным примером ионной кристаллической решетки может быть поваренная соль.

Атомная кристаллическая решетка

Вещества с атомной кристаллической решеткой, как правило, имеют в своих узлах, состоящих собственно из атомов сильные ковалентные связи. Ковалентная связь происходит, когда два одинаковых атома делятся друг с другом по-братски электронами, образуя, таким образом, общую пару электронов для соседних атомов. Из-за этого ковалентные связи сильно и равномерно связывают атомы в строгом порядке – пожалуй, это самая характерная черта строения атомной кристаллической решетки. Химические элементы с подобными связями могут похвастаться своей твердостью, высокой температурой плавления. Атомную кристаллическую решетку имеют такие химические элементы как алмаз, кремний, германий, бор.

Молекулярная кристаллическая решетка

Молекулярный тип кристаллической решетки характеризуется наличием устойчивых и плотноупакованных молекул. Они располагаются в узлах кристаллической решетки. В этих узлах они удерживаются такими себе вандервальсовыми силами, которые в десять раз слабее сил ионного взаимодействия. Ярким примером молекулярной кристаллической решетки является лед – твердое вещество, имеющее однако свойство переходить в жидкое – связи между молекулами кристаллической решетки совсем слабенькие.

Металлическая кристаллическая решетка

Тип связи металлической кристаллической решетки гибче и пластичнее ионной, хотя внешне они весьма похожи. Отличительной особенностью ее является наличие положительно заряженных катионов (ионов метала) в узлах решетки. Между узлами живут электроны, участвующие в создании электрического поля, эти электроны еще называются электрическим газом. Наличие такой структуры металлической кристаллической решетки объясняет ее свойства: механическую прочность, тепло и электропроводность, плавкость.

Кристаллические решетки, видео

И в завершение подробное видео пояснения о свойствах кристаллических решеток.

Автор: Павел Чайка, главный редактор журнала Познавайка

При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

Эта статья доступна на английском – Crystal Lattice in Chemistry.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×