1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Медные электроды для сварки меди

Электроды для сварки меди и её сплавов

Электроды EWC SA — Cu 110 предназначены для сварки чистой меди и бескислородной меди. Наплавленный металл шва без пор с пределом прочности на разрыв, сопоставимым со стандартными марками меди.

Электроды EWC SA — Cu 114 предназначены для сварки оловянистых бронз, медных оловянных бронз(Cu-Sn 6-8%) и латуни (Cu-Zn), а также наплавки на латунь, сталь и чугун, используются для ремонта кованных бронз

Электроды EWC SA — Cu 116 с основным покрытием для сварки и наплавки медно-алюминиевых сплавов (Алюминиевая бронза) с содержанием алюминия 5-9%

Электроды EWC SA-Cu118 предназначены для сварки и наплавки сложных алюминиевых бронз, в том числе с высоким содержанием Mn, а так же для сварки соединений между сталями и медными сплавами.

Электроды EWC SA — CuNi 30 с основным покрытием предназначены для соединения сплавов CuNi с содержанием никеля до 30%

Электроды UTP 34N предназначены для сварки и наплавки сложных алюминиевых бронз, в том числе с высоким содержанием Mn, а так же стали и чугуна.

Электроды UTP 39 для сварки всех комерческих марок меди (типа М1, М 2, М3) и медно-никелевых сплавов.

Электроды UTP 320 применяется для сварки и наплавки медно-оловянных сплавов (бронзы) с содержанием Sn более 8%, медно-цинковых сплавов (латуни), медно-цинковыо-свинцовых сплавов, а также для наплавок на стали и чугун.

Электроды UTP 387 применяется для сварки и наплавки сходных по составу сплавов с содержанием Ni до 30 %, а также не содержащих двухвалентное железо сплавов и сталей другой природы. Устойчив к морской воде, что позволяет использовать этот электрод в судостроительной промышленности, нефтеочистительных заводах, пищевой промышленности и при изготовлении не поддающихся коррозии сосудов и оборудования в целом.

Электроды UTP 343 применяется для наплавки высокоустойчивых слоёв на поверхностях горячих штампов и экструдеров, которые, даже под значительной нагрузкой, не должны оставлять следов износа на поверхностях деформируемых деталей. Главным образом, применяется в автомобильной промышленности (штампы для кузовов автомобилей, штампы глубокой штамповки и т.д.) Слои наплавляются на изделия из бронзы а так же на детали из литой и обычной стали.

Сварка и наплавка изделий из технически чистой меди, содержащей не более 0,01% кислорода. Возможна сварка и наплавка низколегированных сплавов на основе меди, а также сварка меди со сталью. Сварка в нижнем и наклонном положениях шва постоянным током обратной полярности.

Для сварки и наплавки изделий из технически чистой меди марок М1, М2, М3, возможна сварка меди со сталью.

Сварка и наплавка бронз, в основном оловянисто-фосфористых и используемых в художественном литье, заварка дефектов бронзового литья, а также наплавка на сталь и заварка дефектов чугунного литья. Возможна сварка и наплавка латуней. Сварка в нижнем, горизонтальном и вертикальном положениях шва постоянным током обратной полярности.

Сварка меди и медных сплавов

Медь

UTP 39, UTP A 381, UTP A 38

Для сварочных работ следует выбрать сорта меди, свободной от кислорода,по DIN

1787 (например: SF-Cu, SW-Cu и OF-Cu), поскольку эти сорта обладают

наилучшими характеристиками. Очень важны свойства такие как

теплопроводность, высокое распространение тепла, тенденция притягивать газы,

когда в жидком состоянии и испарять эти газы при затвердевании.

В зависимости от размера детали требуется предварительный нагрев до 300

-700°C. Эту температуру следует поддерживать на протяжении всего процесса

сварки. Сварка в защитной газовой среде предпочтительнее, т.к. сварочный

бассейн защищён лучше, чем при окси-ацетиленовой сварке, и тенденция к

Рихтовка в горячем состоянии увеличивает прочность и улучшает ковкость. При

наплавке нескольких слоёв, следует удалить плёнку оксидов с поверхности

Медно-цинковые сплавы

(латунь, специальная латунь )DIN 17660, DIN 1709

UTP 32 — UTP A 32, UTP 320 — UTP A 320, UTP 34 — UTP A

34

UTP A 34MR, UTP384

Из-за испарения цинка в процессе сварки пористость практически неизбежна.

TIG сварка должна осуществляться при минимально возможном токе, переменным

током, чтобы получить эффект очистки.

Для латуни с добавкой Al, например CuZn20Al (специальная латунь 76) лучше

всего подходит TIG-сварка (пост. ток) электродом UTP A 34 MR а для красной

меди (CuSnZnPb), TIG сварка UTP A 384.

Медно-цинковые сплавы сплавы

(цинковые бронзы) DIN 17662, DIN 1705

UTP 32UTP A 32, UTP 320UTP A 320

Кроме сварки электродами с покрытием, для этой группы сплавов также подходит

Теплопроводность низкая, поэтому нагрев требуется только при толщине стенки

детали> 10 мм. Тенденция к пористости низкая. Механические свойства и

коррозиоустойчивость такие же как у основного материала.

Для соединения толстостенных деталей лучше варить с двух сторон

Медно-алюминиевые сплавы

(алюминиевые, сложные алюминиевые бронзы) DIN 17665

UTP 34 — UTP A 34, UTP 34 N — UTP A 34 N, UTP 3422 — UTP A 3422,

UTP A 3444, UTP Flux 34 Sp

Для этой группы подходят как и электроды с покрытием так и TIG/MIG прутки, в

зависимости от выбранного процесса сварки.

При сварке TIG при постоянном токе необходим флюс UTP Flux 34 Sp, чтобы

уничтожить прочную плёнку оксида алюминия. Благодаря этому, удаётся

осуществлять сварку при низком токе, что в свою очередь снижает опасность

возникновения пористости и межкристаллических разрывов.

MIG процесс предпочтительнее для толщины стенок > 6 мм. Область сварки

должна быть очищена до чистого металла, чтобы предотвратить пористость и

растрескивания. Предварительный нагрев требуется только для деталей с

толщиной стенок > 10мм.

Медно-никелевые сплавы DIN 17658

UTP 389UTP A 389, UTP 387UTP A

387

Медно-никелевые сплавы с или без Fe легко свариваемы.

Варить можно как и электродом с покрытием, так и MIG/TIG процессом. Низкая

тепловая энергия и, следовательно, низкая сплавляемость с основным

материалом являются преимуществом.

При МIG сварке, следует избегать перегрева и аккумуляции тепла. Лучше всего

работать МIG импульсным процессом проволокой диаметром 1.2 мм. Оксиды и

другие загрязнения следует удалить из области сварки.

Для сварки разнородных металлов мы рекомендуем использовать UTP 80 M* или

ЭЛЕКТРОД.РУ +7 (812) 334-07-70

  • Электроды ESAB(120)
  • Электроды для сварки углеродистых сталей(17)
  • Электроды для сварки высокопрочных и теплоустойчивых сталей(22)
  • Электроды для сварки нержавеющих и жаропрочных сталей(49)
  • Электроды для сварки алюминиевых сплавов(3)
  • Электроды для сварки сплавов на основе никеля(8)
  • Электроды для сварки чугуна(4)
  • Электроды для сварки медных сплавов(2)
  • Электроды для наплавки(15)
ОбзорКлючевые словаНАКС’ы Химсостав Механические свойства

ООО «ЭЛЕКТРОД.РУ», официальный дистрибьютор и стратегический партнер концерна ESAB, продает сварочные материалы и оборудование ESAB со склада в Санкт-Петербурге. Звоните нам по телефону +7 (812) 334-07-70 или пишите на электронную почту esab@elektrod.ru.

Электроды ESAB для сварки углеродистых сталей (6 из 17) См. все(17)

ГОСТ 9467-75: Э46

Универсальный рутиловый электрод ESAB. Хорошо держит дугу. Возможность сварки по окисленным поверхностям. При сварке угловых соединений дает мелкочешуйчатый вогнутый шов. Лидер продаж!

ГОСТ 9467-75: Э50А

Электрод ESAB для сварки ответственных конструкций из углеродистых и низколегированных сталей. Высокие механические свойства. Постоянный ток.

SFA/AWS A5.1: E6013

Электрод ESAB общего назначения для сварки углеродистых конструкционных и судовых сталей. Относительно мало чувствителен к ржавчине и другим загрязнениям поверхности.

SFA/AWS A5.1: E7018

Электрод ESAB общего назначения с основным покрытием. Отличается высокой вязкостью металла шва, высокой скоростью сварки на вертикальной плоскости. Рекомендуется для сварки тяжело нагруженных конструкций.

SFA/AWS A5.1: E7018-1

Широко известный высококачественный электрод ESAB, применяющийся для сварки высокопрочных низколегированных сталей. Обеспечивает высокую стойкость против горячих трещин. Металл шва отличается высокой ударной вязкостью при низких температурах.

ГОСТ 9467-75: Э50А

Электрод ESAB с основным покрытием для сварки корневых швов толстостенных трубопроводов из углеродистых и низколегированных сталей. Также применяются для приварки трубок теплообменников к трубным решеткам с температурой эксплуатации до 400°С, в условиях крайне ограниченного доступа к зоне сварки.

Электроды ESAB для сварки высокопрочных и теплоустойчивых сталей (4 из 22) См. все(22)

SFA/AWS A5.1: E7018-G

Электрод ESAB с низким содержанием водорода и высокими сварочно-технологическими характеристиками. Наличие никеля обеспечивает высокую ударную вязкость до — 40°С. Низкая гигроскопичность покрытия обеспечивает высокую стойкость против трещин и пор.

Читать еще:  Какие электроды лучше для инверторного сварочного аппарата?

SFA/AWS A5.5: E8018-G

Высококачественный электрод ESAB для сварки низколегированных высокопрочных сталей. Разработан для односторонней сварки трубопроводов из сталей классов прочности по API X60, X65, X70 и ответственных конструкций. Дает великолепное качество сварных швов.

ГОСТ 9467-75: Э60

Электрод ESAB с основным покрытием для сварки заполняющих и облицовочного слоев шва неповоротных стыков трубопроводов в вертикальнои положении на подъем, а также изделий из низкоуглеродистых, низколегированных сталей прочностных классов К55 — К60.

SFA/AWS A5.5: E8015-B6

Электрод ESAB для сварки хромомолибденовых сталей типа 15Х5М. Применяется в нефтеперерабатывающей промышленности при сварке деталей (в т.ч. трубных), работающих в агрессивных средах при высоких температурах и давлении.

Электроды ESAB для сварки нержавеющих и жаропрочных сталей (8 из 49) См. все(49)

SFA/AWS A5.4: E308L-16

Электрод ESAB специально разработанный для сварки тонкостенных изделий из нержавеющих сталей 302, 304, 308, 403, 410, 416, 420, 430, 431, 03Х18Н11, 06Х18Н11, 08Х18Н10, 08Х18Н10Т, 12Х18Н10Т и т.п. Формирует валик с минимальным усилением, имеет пониженное тепловложение и устойчиво горит на малых токах.

SFA/AWS A5.4: E308H-15

Электрод ESAB для сварки изделий из нержавеющих сталей типа 08Х18Н10, 12Х18Н10T, AISI 304, 304H, 321 и т.п., работающих при высоких температурах (до +700°C) когда к металлу шва не предъявляют жесткие требования по стойкости к межкристаллитной коррозии.

SFA/AWS A5.4: E308L-17

Электрод ESAB общего назначения для сварки изделий из нержавеющих сталей типа 08Х18Н10, 12Х18Н10T, AISI 304, 321 и т.п., работающих при температурах до +400°C. Легко зажигается, дает хорошее формирование шва, при сварке шлак самоотделяется. Лидер продаж!

SFA/AWS A5.4: E347-15

Электрод ESAB для сварки изделий длительное время работающих при температурах до +400°С. Свариваемые стали: 03Х18Н11, 06Х18Н11, 08Х18Н12Б, 08Х18Н10, 08Х18Н10Т, 12Х18Н10Т, 321, 347 и т.п. Обеспечивает стойкость против межкристаллитной коррозии.

SFA/AWS A5.4: E316L-16

Электрод ESAB для сварки тонкостенных изделий из нержавеющих сталей с содержанием молибдена, типа 03Х17Н14М2, 10Х17Н13МЗТ, 316 и т.п. Специально разработан для сварки тонкостенных труб и тонколистовых конструкций на спуск, обеспечивая минимальные сварочные деформации.

SFA/AWS A5.4: E316L-17

Электрод ESAB общего назначения для сварки нержавеющих сталей с содержанием молибдена, типа 03Х17Н14М2, 10Х17Н13МЗТ, 316 и т.п. Легко зажигается, дает хорошее формирование шва, при сварке шлак самоотделяется. Обеспечивает стойкость против межкристаллитной коррозии.
Жаростойкость до 400°C.

SFA/AWS A5.4: E309L-17

Электрод ESAB для разнородных сварных соединений, нержавеющих сталей 302, 304, 308, 403, 410, 416, 420, 430, 431, 03Х18Н11, 06Х18Н11, 08Х18Н10, 08Х18Н10Т, 12Х18Н10Т и т.п. с углеродистыми. Обеспечивает стойкость металла шва против межкристаллитной коррозии.

Электрод ESAB для трудносвариваемых сталей, для наплавки штампов и инструментов, работающих при высоких температурах. Применяется для сварки упрочняемых сталей (деталей, инструментов, пружин и т.п.) часто неизвестного состава. Рекомендуется также для сварки разнородных сталей.

Электроды ESAB для сварки алюминиевых сплавов (2 из 3) См. все(3)

Электрод ESAB для сварки проката свариваемых алюминиевых сплавов таких как алюминий-магниевые и алюминий-марганцевые, неупрочняемых прокатом алюминиевых сплавов, использующихся для изготовления емкостей в молочной и пивоваренной промышленности, различных конструкций в судостроении.

Электрод ESAB для сварки литейных алюминиевых сплавов и проката свариваемых алюминиевых сплавов. Используется при сварке силуминовых деталей в двигателях внутреннего сгорания, различных конструкций в строительстве.

Электроды ESAB для сварки сплавов на основе никеля (2 из 8) См. все(8)

(Старое название OK 92.35)

Электрод ESAB для сварки никелевых сплавов с углеродистыми сталями, наплавки поверхностей инструментов и деталей, работающих при высоких температурах, для наплавки поверхностей вентилей и насосов, когда к ним предъявляются требования по коррозийной стойкости.

Электрод ESAB с основным покрытием для сварки сплавов на основе никеля. Широко применяется при сварке конструкций в нефтеперерабатывающей промышленности и при производстве сульфата аммония. Применяется также для сварки никелевых сплавов с углеродистыми сталями и нержавеющих сталей с низколегированными.

Электроды ESAB для сварки медных сплавов (1 из 2) См. все(2)

DIN 1733: EL-CuSn7

Электрод ESAB для сварки меди и бронзы, особенно оловянной бронзы. Может использоваться для плакирования сталей и мелких ремонтных работ на чугунных деталях.

Электроды ESAB для сварки чугуна (4 из 4) См. все(4)

(Новое название OK Ni-CI)

Никелевый электрод ESAB для сварки всех типов чугунов с минимальным предварительным подогревом. Наплавленный металл эластичен и подвергается механической обработке. Рекомендуется для заварки каверн, трещин и общего ремонта. Не рекомендуется применять для сварки более чем в два слоя. Не рекомендуется применять для сварки чугунов с высоким содержанием серы или фосфора.

(Новое название OK NiFe-CI-A)

Железоникелевый электрод ESAB для сварки серого, высокопрочного и ковкого чугуна, ремонта чугунных изделий, а также сварки чугуна со сталью. Сварка выполняется на холодную или с незначительным подогревом. Подходит для сварки изделий из чугуна, работающих при высоких нагрузках, а также серых чугунов с повышенным содержанием серы и фосфора.

(Новое название OK NiFe-CI)

Железоникелевый электрод ESAB для сварки как чугуна так и чугуна со сталью. Применяется для холодной сварка всех типов чугунов. Особенно он подходит для сварки чугунов с шаровидным графитом, т.к. обладает наиболее высокой прочностью. Он также рекомендуется в случаях, когда требуется обрабатываемость наплавленного металла на том же уровне, что и чугуна, имеющего твердость около 250 HB. Наплавленный металл обладает меньшей чувствительностью к растворению в нем серы и фосфора в сравнении с OK 92.18.

(Новое название OK NiCu 1)

Медноникелевый электрод ESAB для сварки серого, высокопрочного и ковкого чугуна. Сварка выполняется на холодную или с незначительным подогревом. Шов хорошо обрабатывается. Рекомендуется применять, когда необходимо получить наплавленный металл по цвету похожий на чугун.

Электроды ESAB для наплавки (4 из 15) См. все(15)

Популярный нержавеющий электрод ESAB применяется для наплавки валов, осей и шестерней из легированных сталей, буферных слоев перед упрочняющей наплавкой, а также для ремонта трещин и устранение дефектов в стальных отливках, ремонта навесного оборудования землеройной техники (приварка постелей, наконечников, зубьев и т.д.).

(Старое название OK 83.28)

Электрод ESAB для наплавки с целью восстановления геометрии и нанесения буферного слоя перед упрочняющей наплавкой. Применяется для наплавки зубчатых колес, цапф, буров для земли, валов и рельс из углеродистой стали, постелей зубьев и самих зубьев ковшей, крановых колес, направляющих роликов и других деталей, работающих в условиях ударного износа. (Старое название OK 83.28)

Электрод ESAB для наплавки инструмента, пуансонов и матриц для холодной штамповки, кулачков валов, седел клапанов, зубчатых колес, осей и других деталей, работающих в условиях трения металла о металл и в коррозионной среде. Прочностные свойства наплавленного металла сохраняются до температуры 500°С.

(Старое название OK 84.78)

Электрод ESAB для наплавки деталей, подверженных абразивному износу и воздействию коррозионной среды, например зубьев ковшей экскаваторов, деталей почвообрабатывающих машин, миксеров, каналов шнеков, дымососов, дробилок и т.д. (Старое название OK 84.78). Дает наплавленный металл с включениями карбида-хрома на аустенитной основе.

Электроды для сварки меди

Для обработки медных изделий подходит несколько вариантов электродов. При работе с электросваркой обязательно помните, что медь в несколько раз теплопроводнее, чем железо. Как говорилось в прошлой статье, при нагревании медного элемента выше 500 градусов Цельсия оно приобретает хрупкость, а на 700-800 градусах дополнительно понижается прочностные характеристики. Даже небольшой удар приводит к трещинкам.

Состав защитных покрытий электродов

Покрытые электроды часто требуются для электросварки. В табличке указаны основные марки и варианты их покрытий:

Особенности использования различных марок электродов

Варианты с медным стержнем (номера 1-4, 6) понижают проводимость тепловой энергии и электричества в сварном шве примерно в 3-4 раза. Если для формирования шва наоборот необходимы большие показатели проводимости, то подобные варианты вам не подходят.

Номер 5 сначала был разработан для обработки стальных изделий. Но потом выяснилось, что они подходят и для меди. Довольно хорошего качества можно добиться с помощью медных стержней марок М1, М2 или М3.

Читать еще:  Электроды под переменный ток

Для обработки медных элементов с большой толщиной кромок применяется номер 6. Допустима работа с металлом от 20 мм в толщину.

Номер 7 подходит для сварки чугунных деталей. Также он может применяться и при работе с медью средней толщины. Соединение получается довольно прочным и плотным. Не подходят в случаях, если медному изделию нужны высокие показатели электро- и теплопроводности.

Номера 1 и 8 идентичны по химсоставу, разница лишь в количественном вхождении добавок.

Номер 9 имеет защиту в два слоя. Однако на практике выяснилось, что каких-либо преимуществ такое покрытие не прибавляет. Гораздо выгоднее взять электрод 4. Он может работать с переменными токами и обеспечивает более качественный шов.

Электроды из угля (графита) нужны при сварке деталей, которым требуется хорошо проводить тепло и электричество.

Материал электродной проволоки

При сварке медных деталей электродами из меди, латуни или бронзы требуется выполнить обязательную обработку кромок, аналогичную угольной сварке. Сварной шов обрабатывается аналогично.

Медные электроды выполнены из марок М1-М3. Иногда их дополнительно легируют фосфором. Оптимальное покрытие для этого вида электродов имеет в своем составе:

  • ферросплав марганца и железа – 50%,
  • ферросплав железа и кремния (75-ти %) – 8%,
  • шпат полевой – 12%,
  • флюорит – 10%,
  • расплавленное стекло – (20%).

Именно на последнем элементе замешаны все остальные. Толщина такого покрытия составляет 0,4 мм. Это не единственный вариант покрытия, другие можете посмотреть в табличке сверху.

Бронза

Для сварки медных деталей допустимо использование бронзовых стержней марки БрКМц-3-1. Их покрытие имеет состав:

  • руда марганца – 17.5%,
  • ферросплав железа и кремния (75-ти %) – 32%,
  • флюорит – 32%,
  • кристаллический литейный графит – 16%,
  • алюминий — 2.5%.

Эти компоненты также замешиваются в стекле в жидком состоянии. Марка БР.ФО 4-03 тоже довольно популярна. Бронзовые стержни помогают сформировать хороший шов. Однако они хуже раскисляют медь, чем все остальные варианты. Также снижается прочность шва при использовании прута Бр.КМц 3-1.

Технологические особенности ручной сварки электродами

При толщине листа не более 4 миллиметров можно проводить работы с отбортовкой без материалов для присадки. Если медь толще 4 миллиметров, то следует сваривать её под углом 35-45 градусов со скосом с двух сторон.

Кромки следует положить с небольшим зазором, но не более полмиллиметра. Это исключит протечки расплавленной меди. Рекомендовано использование асбестовых, графитовых или керамических прокладок. На концах сварного шва нужно сделать формовку.

Вид тока для этого вида сварки – постоянный, прямой полярности. Средние показатели длины дуги — 10-13 миллиметров, а напряжения — 46-60 Вольт. Оптимальная скорость сварочных работ – 20-30 сантиметров в минуту. Если есть возможность, то вся сварка выполняется за один прогон.

При работе бронзовыми электродами длина дуги берется самая короткая из возможных. Ток также должен быть обратной полярности и постоянный. Силу же определяют из расчета 50-60 Ампер на 1 миллиметр диаметра электрода.

Выбор диаметра электрода

Это значение зависит от толщины свариваемой меди, материала самого стержня, вида кромок и т.д. Прутки из бронзы БФ.Оф 4-0.3 или меди выбираются сечением, равным толщине свариваемого металла, но не превышающим 6 миллиметров. При стержнях прочих марок сечение берется на 1 мм больше, чем стенки медных элементов.

Для сварки в несколько слоев или при наличии среднего или толстого медного изделия диаметр сечения вычисляется по формуле:

d= от (s/2 — 2) до s/2, где s – толщина для сварки, а d – диаметр самого электрода.

При этом медные листы не сваривают электродами с диаметров свыше 8 миллиметров. В основном сейчас используют средние величины в 5-6 миллиметров. При диаметре менее 3 миллиметров стержень становится довольно хрупким. Проволоке от 2 миллиметров и ниже требуется нагартовка.

Графитовые электроды

При их использовании присадочным материалом являются прутки из бронзы Бр.ОФ6.5-0.15 или из меди М и МСР1. Последние содержат до 1% серебра. Также можно использовать и латунные прутья.

Режим сварки и диаметр электрода также выбирается исходя из толщины свариваемого изделия. Для 4 миллиметров подойдет электрод диаметром 4-6 миллиметров. При этом сила тока должна быть в диапазоне от 14 до 320 Ампер. Диаметр в 8-10 миллиметров нужен для обработки стенок меди толщиной более 4 миллиметров. Силу тока при этом нужно увеличить до 350-550 Ампер.

Готовый шов обязательно требуется проковать. Толстые листы следует предварительно нагреть до 20-350 градусов. Тонким нагревание не требуется.

Чтобы улучшить качество шва и избавиться от образования оксидной пленки применяются защитные флюсы. С электродами из графита используется два варианта флюсов по своему составу:

  • Прокаленная бура (68%), кислота кремниевая (15%), натрий фосфорнокислый (15%), уголь древесный (2%).
  • Прокаленная бура (50%), кислота кремниевая (15%), натрий фосфорнокислый (15%), уголь древесный (20%).

Подходит и чистая бура, то предпочтительнее в нее добавить 4-6% магния в виде металла.

Технология сварки меди и медных сплавов.

Кислород малорастворим в твердой меди. При повышении температуры медь активно окисляется, образуя оксид меди Cu 2 O , который при затвердевании образует с медью эвтектику Cu – Cu 2.

Располагаясь по границам зерен, эвтектика снижает коррозионную стойкость и пластичность меди. При содержании в меди кислорода более 0,1 процента затрудняются процессы горячей деформации, пайки, сварки и других видов горячей обработки.

Водород хорошо растворяется в жидкой меди. В затвердевшей меди растворимость водорода незначительна. С повышением температуры растворимость водорода возрастает, особенно при переходе в жидкое состояние (рис. 1.).

Медь и ее сплавы в жидком состоянии могут взаимодействовать также с оксидами углерода CO 2 и CO . Азот имеет весьма малое сродство к меди и нерастворим в ней.

Рис. 1. Растворимость водорода в ( ρ н 2 =100 кПа)

Насыщение металла шва газами может быть предпосылкой к образованию пористости. Так во время охлаждения и кристаллизации металла сварочного шва возможно выделение растворенного в меди водорода и образование пористости. Пористость могут вызвать водяные пары, появившиеся в металле шва в результате реакции водорода с кислородом оксида меди Cu 2 O . Водяные пары, накапливаясь в микродефектах металла сварочного шва, создают в нем давление, которое разрушает металл, образуя микротрещины. Явление это носит название водородной болезни меди.

Возникновение пор и микротрещин может быть также связано и с усадочными явлениями, протекающими в процессе кристаллизации сварного шва. Низкая стойкость меди и ее сплавов против возникновения пор в сварных швах в основном обусловлена активным взаимодействием меди с водородом и протеканием при этом сопутствующих процессов (образование водяных паров, выделение водорода).

Медь и ее сплавы при сварке подвержены образованию горячих трещин. Это обусловлено высоким значением коэффициента теплового расширения, большой величиной усадки при затвердевании и высокой теплопроводностью наряду с наличием в меди и ее сплавах вредных примесей (кислорода, висмута, сурьмы, мышьяка, свинца, серы), которые образуют с медью легкоплавкие эвтектики. При затвердевании металла шва эвтектики сосредоточиваются по границам кристаллов, снижая межкристаллитную прочность. Для обеспечения высоких свойств металла концентрацию примесей в меди ограничивают. Так, например, в меди допускается не более 0,005 процента сурьмы, 0,005 висмута, 0,004 серы.

Электроды для сварки цветных металлов: алюминия, меди, никеля и их сплавов.

К этой группе относятся электроды, предназначенные для сварки алюминия, меди, никеля и их сплавов. Электроды для сварки цветных металлов не стандартизованы и их производят по отдельным техническим условиям. Исключение — высоконикелевые электроды, которые применяются для сварки сплавов на железоникелевой и никелевой основах и высоколегированных сталей, вследствие чего они входят в ГОСТ 10052-75.

Сварка цветных металлов может существенно отличаться от сварки стали, из-за резкого различия их физико-химических свойств. Главными факторами, определяющими свариваемость цветных металлов, являются температуры плавления и кипения, теплопроводность, сродство к содержащимся в воздухе газам (кислороду, азоту, парам воды).

Электроды для сварки алюминия и его сплавов

Алюминий и алюминиевые сплавы обладают малой плотностью, высокой тепло- и электропроводностью, повышенной коррозионной стойкостью.

Особенностью алюминия и его сплавов является легкая окисляемость. Это приводит к тому, что на их поверхности практически всегда присутствует плотная тугоплавкая пленка оксида алюминия. Эта пленка может образовываться и на поверхности сварочной ванны, что нарушает стабильность процесса сварки, препятствует формированию шва, приводит к появлению непроваров и неметаллических включений. Для получения качественных сварных соединений необходимо принимать специальные меры, направленные на удаление оксидной пленки. При ручной дуговой сварке это достигается путем введения в состав электродного покрытия хлористых и фтористых солей щелочных и щелочно-земельных металлов. В расплавленном состоянии эти материалы создают необходимые условия для удаления пленки и устойчивого горения дуги.

Читать еще:  Графитовые электроды что это?
Марка электродовДиаметр, ммПоложение сваркиОсновное назначение
ОЗА-14,0; 5,0Нижнее, ограниченно вертикальноеСварка и наплавка технически чистого алюминия
ОЗА-24,0; 5,0Нижнее, ограниченно вертикальноеЗаварка дефектов литья и наплавка изделий из алюминиево-кремнистых сплавов
ОЗАНА-13,0; 4,0; 5,0Нижнее, вертикальноеСварка и наплавка изделий из технически чистого алюминия
ОЗАНА-23,0; 4,0; 5,0Нижнее, вертикальноеЗаварка дефектов литья и наплавка изделий из алюминиево-кремнистых сплавов

Электроды для сварки меди и ее сплавов

При сварке латуней и бронз возникают дополнительные затруднения. Сварка латуни усложняется интенсивным испарением цинка, сварка бронз — высокой хрупкостью и малой прочностью в нагретом состоянии.

Марка электродовДиаметр, ммПоложение сваркиОсновное назначение
Комсомолец-1003,0; 4,0; 5,0Нижнее, наклонноеСварка и наплавка изделий из технически чистой меди
АНЦ/ОЗМ-24,0; 5,0Нижнее, наклонноеСварка и наплавка изделий из технически чистой меди, содержащей не более 0,01% кислорода
АНЦ/ОЗМ-34,0; 5,0Нижнее, наклонноеСварка и наплавка изделий из технически чистой меди, содержащей не более 0,01% кислорода
АНЦ/ОЗМ-44,0; 5,0Нижнее, наклонноеСварка и наплавка изделий из технически чистой меди, содержащей не более 0,01% кислорода
ОЗБ-2М3,0; 4,0Нижнее, горизонтальное, вертикальноеСварка и наплавка бронз, заварка дефектов бронзового и чугунного литья
ОЗБ-34,0; 5,0НижнееИзготовление и восстановление электродов машин контактной сварки методом ручной дуговой наплавки

Электроды для сварки никеля и монель металла

Сварка никеля и его сплавов затруднена вследствие большой чувствительности к примесям и, в первую очередь, к растворенным газам (кислороду, водороду и особенно азоту) и высокой склонности к образованию горячих трещин. Для предупреждения возможного образования пор и трещин необходимо применять основной металл и сварочные электроды высокой чистоты, осуществлять их качественную подготовку к сварке.

В целом по технологии и технике ручной дуговой сварки никель и его сплавы близки к высоколегированным коррозионно-стойким сталям.

Сварка меди

Все это обеспечивает меди широкое применение в самых различных областях. Пайка и сварка меди — операции, с которыми рано или поздно приходится сталкиваться любому мастеру, любящему работать с металлом. Кроме технически чистой меди широко распространены ее сплавы: бронзы и латуни.

Свариваемость меди и некоторые особенности

  • Склонность меди к окислению. Соединение с кислородом с образованием тугоплавких окислов приводит к образованию хрупких зон и трещин в области термической обработки.
  • Высокий коэффициент линейного расширения (в 1,5 раза больше, чем у стали) вызывает большую усадку при затвердевании, приводящую к возникновению горячих трещин.
  • Склонность металла к поглощению газов в расплавленном состоянии из воздуха (в основном кислорода и водорода) также крайне отрицательно сказывается на качестве сварного шва. Водород, в частности, в момент кристаллизации металла соединяется с кислородом закиси меди и образует водяной пар, вызывающий образование пор и трещин.
  • Расположенность к росту зерна приводит к появлению хрупких структур в зоне термического влияния.
  • Большой коэффициент теплопроводности (в 7 раз выше, чем у стали) требует источника нагрева с высокой мощностью и концентрацией энергии в зоне плавления. Из-за быстрого отвода тепла ухудшается формирование шва, растет склонность к возникновению в нем дефектов — подрезов, наплывов и пр.
  • Большая жидкотекучесть меди (в 2-2,5 раза больше чем у стали) не позволяет производить на весу одностороннюю стыковую сварку с полным проплавлением кромок и хорошим формированием шва с обратной стороны. Для стыковых швов могут потребоваться подкладки с противоположной стороны, плотно прилегающие к свариваемому металлу. Большая жидкотекучесть меди затрудняет также сварку в вертикальном и особенно в потолочном положении.
  • При температуре выше 200°С снижается прочность меди с одновременным уменьшением пластичности (в отличие от других металлов, например стали, у которых снижение прочности при повышенной температуре связано с повышением пластичности). В интервале температур 250-550°С, при которых пластичность меди достигает минимальных значений, могут возникать трещины. В связи с этим следует избегать жестких закреплений. Не рекомендуется выполнять швы в два прохода, так как первый проход уже создает жесткое закрепление. Прихватки следует заменять скользящими закреплениями.

Лучше всего сваривается раскисленная медь (М-1р, М-2р, М-3р), в которой содержание кислорода не превышает 0,01%.

Для преодоления трудностей сваривания, технология сварки меди предусматривает газовую или флюсовую защиту сварочной ванны, в состав электродов и присадочной проволоки вводят раскислители: кремний, алюминий, марганец и прочие.

Способы сварки меди

Подготовка меди к сварке

Затем полностью удаляется окисная пленка — металлической щеткой или сеткой из нержавейки, или каким-то абразивным инструментом — обработкой детали до блеска.

Очистка детали — очень важный этап, прямо влияющий на качество сварного шва. Без неё невозможно получить прочный и красивый шов.

При толщине стенок от 5 мм, сварку выполняют с предварительным подогревом детали до 300-700°C. Особенно важен подогрев для массивных деталей, и чем массивнее деталь, тем выше должен быть нагрев.

Сварка меди металлическими покрытыми электродами (режим MMA)

Толщина меди, ммДиаметр электрода, ммТок сварки меди, А
22-3100-120
33-4120-160
44-5160-200
55-6240-300
65-7260-340
7-86-7380-400
9-106-8400-420

В процессе сварки тонколистового металла может потребоваться уменьшение первоначально установленного тока — из-за разогрева детали и возникновения в связи с этим опасности прожогов.

Для сварки меди предназначены электроды Комсомолец-100, АНЦ/ОЗМ-2, АНЦ/ОЗМ-3, АНЦ/ОЗМ-4, ОЗБ-2М (для бронз) и пр. Электроды перед использованием рекомендуется прокаливать.

Покрытые электроды для сварки меди не могут обеспечить такое же качество шва, какое обеспечивает сварка в аргоне. Прочность сварного соединения, выполненного с их использованием, зависит от многих факторов: правильного выбора марки электрода, соблюдения требуемой технологии (тщательности очистки, предварительного подогрева, оптимального токового режима) и, разумеется, от квалификации сварщика.

Сварка меди вольфрамовым электродом в среде аргона (режим DC/AC TIG)

Толщина меди, ммДиаметр электрода, ммДиаметр присадочного прутка, ммТок сварки меди, АРасход аргона, л/мин
1,22,5-3,01,6120-1307,0-8,5
1,52,5-3,02,0140-1507,0-8,5
2,53,5-4,02,5-3,0220-2307,5-9,5
33,5-4,02,5-3,0230-2407,5-9,5

В качестве защитных газов используются аргон, гелий, азот или их смесь. Эти газы отличаются своими технологическими свойствами, в чем-то превосходя, в чем-то уступая друг другу. Азот, в частности, требует меньшего сварочного тока в сравнении с аргоном, но швы, выполненные с его использованием, имеют некоторую склонность к порообразованию. Кроме этого, при прочих равных условиях расход азота превышает расход аргона. Поэтому последний, с учетом еще и его универсальности, используется чаще других газов.

В качестве присадочного материала применяются прутки меди (M1, М2, М3) или бронзы (Бр КМц3-1 и пр.). На практике часто используют медные жилы из электрических кабелей и проводов. Желательно, чтобы температура плавления присадки была ниже температуры плавления основного металла. Для лучшей защиты шва, пруток следует вести перед горелкой, а не за ней (см. второе фото). Листы меди толщиной до 4 мм можно сваривать с отбортовкой без присадочного материала.

Во избежание загрязнения вольфрамового электрода при поджоге дуги, последнюю можно возбуждать на угольной или графитовой пластине, перенося ее затем на изделие.

Сварка может производиться в нижнем и вертикальном положении шва.

В отличие от алюминия, который варится без поперечных движений, сварка меди требует манипуляций горелкой для формирования шва и обеспечения его соединения со стенками. Металл нужно «расталкивать» круговыми или зигзагообразными движениями горелки.

Тонколистовые детали не рекомендуется сваривать сплошным швом во избежание прожогов. Они варятся короткими швами с прерыванием дуги и перекрытием валиками друг друга.

Заварку кратера нужно производить, удлиняя дугу постепенным отводом горелки, — в том случае, если сварочный аппарат не имеет специальной функции «заварка кратера».

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector