2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Как наплавить металл электродом?

Наплавка электродами сварочными на наклонной поверхности

Наплавка сварочными электродами на наклонной поверхности позволяет изготовить все слои (или валики) высотой, которая равна или несколько более диаметра самого сварочного электрода. При этом валики, как правило, наплавляют без поперечного манипулирования электродом сварочным. При сварочных работах на наклонной поверхности жидкий металл сварочного шва, его вершина смещаются несколько в нижнюю часть шва сварочного. Верхняя часть слоя сварочного от его верхнего края и до вершины шва, образует площадку. В то же время основная часть жидкого шлака стекает, а потом застывает в нижней части слоя шва. В верхней части слоя наплавленного металла шлак ложится довольно тонким слоем. Именно это позволяет выполнить последующие сварочные валики, не отбивая шлака. Говоря о силе сварочного тока – она должна быть на десять с половиной процентов больше, чем при работе с удалением сварочного шлака после каждого прохода электрода сварочного.

При изготовлении очередного валика нижняя часть ванны сварочной должна доходить до вершины предыдущего шва, что позволяет формировать валик сварочный без перепадов или с самыми минимальными перепадами между слоями.

Держать сварочный электрод рекомендуется только вертикально по отношению к полочке предшествующего валика, чтобы он не отставал сзади и не забегал вперед при этом.

Такой способ сварки электродом по шлаку необходимо использовать с учетом толщины и размера рабочего изделия и его поверхности. Нельзя при этом допускать полного остывания шлака либо перегрева шлака.

Подобный способ «сварки по шлаку» позволяет выполнять наплавку с очень высокой производительностью и достойным качеством.

Основные преимущества такого способа соединения электродом по шлаку перед сваркой электродом с отбивкой шлака в следующем:

1. Существенно сокращается время, затрачиваемое на отбивание шлака после наплавки каждого слоя.

2. Старт сварки новым электродом сварочным, а также зажигание дуги происходит под шлаком, что исключит формирование стартовых пор.

3. При сварке «по шлаку» обеспечивается хорошая защита и самой сварочной ванны и металла шва.

4. Присутствие дополнительного жидкого шлака помогает нахождению металла сварочного шва длительное время в жидком состоянии, а также формированию плотного валика сварочного без перепадов между чешуйками.

5. Метод «сварка по шлаку» защищает от брызг слой наплавочный. Это же обеспечивает чистоту наплавки, исключает время зачистки каждого сварочного валика от брызг при многослойной наплавке.

«Сварку по шлаку» рекомендуют, главным образом, применять для наплавки углеродных сталей электродами сварочными с основным составом покрытия. Не рекомендуют применять такой метод с коррозийно-стойкими электродами – ОЗЛ-312, ОЗЛ-8, ОЗЛ-6, ЭА-400/10у. Так как застывший после сварки этими электродами шлак очень тугоплавкий. В свою очередь, это ведет к дефектам наплавки и сварки – непроварке и шлаковым включениям.

При наплавке небольших участков на металле толщиной менее десяти миллиметров и при работе с мелкими изделиями, нельзя допускать перегрева поверхности основного соединяемого металла. Для этого необходимо ограничить длительность непрерывного выполнения слоев.

Так же для этого необходимо знать, что метод « сварки по шлаку» требует значительных навыков, знаний, опыта и выполняется только сварщиками очень высокой квалификации.

Представленные на сайте сведения носят информационный характер
и не являются публичной офертой,
определяемой положениями Статьи 437(2) ГК РФ .

Восстановление деталей наплавкой металла

Наплавкой называется процесс нанесения одного расплавленного металла (называемого присадочным) на поверхность другого (называемого основным). При этом основной металл также расплавляется на небольшую глубину для образования гомогенного соединения. Цель наплавки может быть различной: восстановление утраченной геометрии детали или придание ей новой формы, образование поверхностного слоя с заданными физико-механическими свойствами (такими как повышенная твердость, износостойкость, антифрикционность, коррозионная стойкость, жаростойкость и пр.), упрочнение наплавкой.

Наплавку можно производить на любые поверхности — плоские, конические, цилиндрические, сферические. В больших пределах может меняться и ее толщина — от нескольких долей миллиметра до сантиметра и более.

Основные принципы наплавки

  • Необходимо стремиться к минимальному проплавлению основного металла. Это достигается путем наклона электрода в сторону, обратную ходу наплавки.
  • Должно быть как можно меньшее перемешивание наплавленного металла с основным.
  • Нужно стараться достичь минимальных остаточных напряжений и деформаций в детали. Это требование во многом обеспечивается соблюдением двух предшествующих.
  • Необходимо снижать до приемлемых значений припуски на последующую обработку детали. Говоря другими словами, нужно наплавлять металла ровно столько, сколько необходимо, и не больше.

Применяются различные способы наплавки металла — электродуговая, газовая, электрошлаковая, индукционная, плазменная, импульсно-дуговая, вибродуговая, порошковая наплавки. Наибольшее распространение получила дуговая наплавка.

Материалы для наплавки существуют в различных формах. Это могут быть присадочные прутки, порошкообразные смеси, наплавочные покрытые электроды, порошковая и цельностержневая проволока. В электродуговой наплавке применяются в основном покрытые электроды, присадочные прутки и проволока.

Наплавка покрытыми электродами

Наплавка требует определенных навыков в работе. Надо при минимальном токе и напряжении, чтобы не увеличивать долю основного металла в наплавленном, оплавить оба компонента. Состав металла будет определять тип электрода, а толщину и форму — диаметр электрода. Напряжение дуги определяет форму наплавленного валика, при его повышении увеличивается ширина и уменьшается высота валика, возрастает длина дуги и окисляемость легирующих примесей, особенно углерода. В связи с этим стремятся к минимальному напряжению, которое должно согласовываться с током дуги.

Наплавка деталей из стали осуществляется, как правило, постоянным током обратной полярности (на электроде «плюс») в нижнем положении.

Детали из низкоуглеродистых и низколегированных сталей наплавляют обычно без предварительно нагрева. Но нередко требуется предварительный подогрев и последующая термообработка с целью снятия внутренних напряжений. Более детальные требования к наплавке сообщаются в документации на применяемые наплавочные электроды. Например, для электрода ОЗИ-3 приводятся следующие технологические особенности: «Наплавку производят в один-четыре слоя с предварительным подогревом до температуры 300-600°С. После наплавки рекомендуется медленное охлаждение. Возможна наплавка ванным способом на повышенных режимах. Прокалка перед наплавкой: 350°С, 1 ч.»

Поверхность детали перед наплавкой очищается от масла, ржавчины и других загрязнений.

Применяются различные схемы расположения наплавочных швов. В случае плоских поверхностей различают два основных вида наплавки — использование узких валиков с перекрытием друг друга на 0,3-0,4 их ширины, и широких, полученных увеличенными поперечными движениями электрода относительно направления прохода.

Другой способ — укладка узких валиков на некотором расстоянии один от другого. При этом шлак удаляют после наложения нескольких валиков. После этого валики наплавляются и в промежутках.

Во избежание коробления деталей, наплавление рекомендуется проводить отдельными участками, «вразброс», а укладку каждого последующего валика начинать с противоположной стороны по отношению к предыдущему.

Наплавка цилиндрической поверхности выполняется тремя способами — валиками вдоль образующей цилиндра, валиками по замкнутым окружностям и по винтовой линии. Последний вариант (по винтовой линии) является особенно удобным в случае механизированной наплавки, при которой детали в процессе наплавки придается равномерное вращение.

Для восстановления и повышения срока службы режущего, штампового и измерительного инструмента, а также деталей механизмов, работающих при интенсивном износе, применяется наплавка рабочих поверхностей твердыми сплавами, представляющими собой соединения таких металлов, как титан, вольфрам, тантал, марганец, хром и других с бором, углеродом, кобальтом, железом, никелем и пр.

При изготовлении новых инструментов и деталей с твердосплавной наплавкой, в качестве заготовок (оснований) применяются детали из углеродистых или легированных сталей. В случае ремонта деталей с большим износом, перед наплавкой твердыми сплавами делают предварительную наплавку электродами из малоуглеродистой стали.

Для получения более качественной наплавки, предупреждения образования трещин и снижения напряжений, во многих случаях целесообразен подогрев заготовок до температуры 300°C и выше.

Наплавка металлорежущего инструмента и штампов. Металлорежущие инструменты и штампы, работающие при холодной и горячей штамповке, наплавляют электродами ОЗИ-3, ОЗИ-5, ОЗИ-6, ЦС-1, ЦИ-1М и прочие марки. Металл, наплавленный этими электродами, обладает высокой сопротивляемостью к истиранию и смятию при больших удельных нагрузках и высоких температурах — до 650-850°C. Твердость наплавленного слоя без термообработки составляет от 52 HRC (ОЗИ-5) до 61 HRC (ОЗИ-3). Наплавляется 1-3 слоя общей толщиной 2-6 мм. Деталь перед наплавкой подогревают до температуры 300-700°С (в зависимости от марки электрода).

Наплавка деталей, работающих на истирание без ударных нагрузок. Если требуется получить наплавленный металл особо высокой твердости, можно использовать электроды для наплавки Т-590 и Т-620. Они специально предназначены для покрытия деталей, работающих на интенсивное истирание. Их стержень изготовлен из малоуглеродистой стали, зато в покрытия входят феррохром, ферротитан, ферробор, карбид бора и графит. Благодаря этим материалам твердость наплавленного металла может достигать 62-64 единиц по HRC.

Читать еще:  Какие электроды нужны для сварки нержавейки?

Из-за того, что наплавленный металл обладает хрупкостью и склонностью к образованию трещин, изделия, наплавленные электродами Т-590 и Т-620, не предназначены для эксплуатации в условиях значительных ударных нагрузок. Наплавка твердосплавного металла производится в один-два слоя. Если требуется наплавлять большую толщину, нижние слои наплавляются электродами из малоуглеродистой стали и лишь заключительные — твердосплавными.

Наплавка деталей, работающих на истирание с ударными нагрузками. Детали из марганцовистых сталей (110Г13Л и подобные ей), работающие в условиях интенсивного поверхностного износа и высоких ударных нагрузок (в частности, рабочие органы строительного и землеройного оборудования), наплавляют электродами ОМГ-Н, ЦНИИН-4, ОЗН-7М, ОЗН-400М, ОЗН-300М и прочие марки. При их использовании твердость наплавляемого металла во втором слое получается 45-65 HRC при высоких значениях вязкости.

Наплавка нержавеющих сталей. Для наплавки деталей из нержавеющих сталей применяются электроды ЦН-6Л, ЦН-12М-67 и прочие марки. Стержень этих электродов изготовлен из нержавеющей высоколегированной проволоки. Кроме высокой коррозионной стойкости, наплавленный металл имеет еще и устойчивость к задиранию, что позволяет использовать эти электроды для наплавки уплотнительных поверхностей в арматурных изделиях.

При использовании некоторых электродов для наплавки нержавеющих сталей, рекомендуется производить предварительный и сопутствующий подогрев детали до температуры 300-600°С и осуществлять после наплавки термообработку.

Наплавка меди и ее сплавов. Наплавка меди и ее сплавов (бронз) может осуществляться не только на медное или бронзовое основание, но также на сталь и чугун. В этом случае создаются биметаллические изделия, имеющие необходимые эксплуатационные качества (высокую стойкость против коррозии, низкий коэффициент трения и прочие ценные свойства, присущие меди и ее сплавам) и обладающие при этом гораздо более низкой стоимостью в сравнении с деталями, изготовленными полностью из меди или ее сплавов.

Алюминиевые бронзы, в частности, обладающие высокими антифрикционными свойствами, очень хорошо работают в узлах трения, поэтому их наплавляют на червячные колеса, сухари и другие детали, работающие в условиях трения.

Наплавка деталей из технически чистой меди может производиться электродами «Комсомолец-100» или присадочными прутками из меди или ее сплавов. При наплавке меди на медь применяют предварительный подогрев до температуры 300-500°С.

Наплавленный слой желательно подвергать проковке, при температуре меди выше 500°С.

Если требуется наплавка бронзой, можно использовать электроды ОЗБ-2М, содержащие помимо, составляющей основу, меди также олово, марганец, никель и железо. Изделия, наплавленные электродами ОЗБ-2М, имеют высокую поверхностную износостойкость.

Наплавка меди и ее сплавов производится постоянным током обратной полярности в нижнем положении.

Наплавка в среде защитных газов

При восстановлении наплавкой деталей из углеродистых сталей можно использовать более дешевый углекислый газ. Учитывая тот факт, что CO2 окисляет расплавленный металл, наплавочная проволока в этом случае должна иметь раскислители (марганец, кремний и пр.).

Наплавку меди и ее сплавов можно производить в азоте, который нейтрален по отношению к меди.

Высоколегированные стали, сплавы на магниевой и алюминиевой основе наплавляются в аргоне, гелии или их смеси.

Наплавку неплавящимся вольфрамовым электродом осуществляют в аргоне и гелии. Вообще, инертные газы, особенно, аргон, являются универсальными, подходящими для сварки и наплавки практически любого металла.

В качестве материалов для наплавки полуавтоматами углеродистых и низколегированных сталей применяются сварочные проволоки сплошного сечения (Св-08ГС, Св-08Г2С, Св-12ГС), и специальные наплавочные (Нп-40, Нп-50, Нп-30ХГСА). Для наплавки нержавейки применяют проволоку из нержавеющей стали. Может осуществляться наплавка и порошковой проволокой, позволяющей получить наплавленный слой с особыми свойствами.

При восстановлении деталей наплавкой методом MIG/MAG применяют как и в случае MMA постоянный ток обратной полярности, обеспечивающий меньшее проплавление основного металла. При использовании вольфрамового электрода (метод TIG) используют прямую полярность, исключающую оплавление вольфрамового электрода. Наплавку нужно стараться вести как можно более короткой дугой — во избежание разбрызгивания металла.

ЭЛЕКТРОД.РУ +7 (812) 334-07-70

  • Электроды ESAB(120)
  • Электроды для сварки углеродистых сталей(17)
  • Электроды для сварки высокопрочных и теплоустойчивых сталей(22)
  • Электроды для сварки нержавеющих и жаропрочных сталей(49)
  • Электроды для сварки алюминиевых сплавов(3)
  • Электроды для сварки сплавов на основе никеля(8)
  • Электроды для сварки чугуна(4)
  • Электроды для сварки медных сплавов(2)
  • Электроды для наплавки(15)
ОбзорКлючевые словаНАКС’ы Химсостав Механические свойства

ООО «ЭЛЕКТРОД.РУ», официальный дистрибьютор и стратегический партнер концерна ESAB, продает сварочные материалы и оборудование ESAB со склада в Санкт-Петербурге. Звоните нам по телефону +7 (812) 334-07-70 или пишите на электронную почту esab@elektrod.ru.

Электроды ESAB для сварки углеродистых сталей (6 из 17) См. все(17)

ГОСТ 9467-75: Э46

Универсальный рутиловый электрод ESAB. Хорошо держит дугу. Возможность сварки по окисленным поверхностям. При сварке угловых соединений дает мелкочешуйчатый вогнутый шов. Лидер продаж!

ГОСТ 9467-75: Э50А

Электрод ESAB для сварки ответственных конструкций из углеродистых и низколегированных сталей. Высокие механические свойства. Постоянный ток.

SFA/AWS A5.1: E6013

Электрод ESAB общего назначения для сварки углеродистых конструкционных и судовых сталей. Относительно мало чувствителен к ржавчине и другим загрязнениям поверхности.

SFA/AWS A5.1: E7018

Электрод ESAB общего назначения с основным покрытием. Отличается высокой вязкостью металла шва, высокой скоростью сварки на вертикальной плоскости. Рекомендуется для сварки тяжело нагруженных конструкций.

SFA/AWS A5.1: E7018-1

Широко известный высококачественный электрод ESAB, применяющийся для сварки высокопрочных низколегированных сталей. Обеспечивает высокую стойкость против горячих трещин. Металл шва отличается высокой ударной вязкостью при низких температурах.

ГОСТ 9467-75: Э50А

Электрод ESAB с основным покрытием для сварки корневых швов толстостенных трубопроводов из углеродистых и низколегированных сталей. Также применяются для приварки трубок теплообменников к трубным решеткам с температурой эксплуатации до 400°С, в условиях крайне ограниченного доступа к зоне сварки.

Электроды ESAB для сварки высокопрочных и теплоустойчивых сталей (4 из 22) См. все(22)

SFA/AWS A5.1: E7018-G

Электрод ESAB с низким содержанием водорода и высокими сварочно-технологическими характеристиками. Наличие никеля обеспечивает высокую ударную вязкость до — 40°С. Низкая гигроскопичность покрытия обеспечивает высокую стойкость против трещин и пор.

SFA/AWS A5.5: E8018-G

Высококачественный электрод ESAB для сварки низколегированных высокопрочных сталей. Разработан для односторонней сварки трубопроводов из сталей классов прочности по API X60, X65, X70 и ответственных конструкций. Дает великолепное качество сварных швов.

ГОСТ 9467-75: Э60

Электрод ESAB с основным покрытием для сварки заполняющих и облицовочного слоев шва неповоротных стыков трубопроводов в вертикальнои положении на подъем, а также изделий из низкоуглеродистых, низколегированных сталей прочностных классов К55 — К60.

SFA/AWS A5.5: E8015-B6

Электрод ESAB для сварки хромомолибденовых сталей типа 15Х5М. Применяется в нефтеперерабатывающей промышленности при сварке деталей (в т.ч. трубных), работающих в агрессивных средах при высоких температурах и давлении.

Электроды ESAB для сварки нержавеющих и жаропрочных сталей (8 из 49) См. все(49)

SFA/AWS A5.4: E308L-16

Электрод ESAB специально разработанный для сварки тонкостенных изделий из нержавеющих сталей 302, 304, 308, 403, 410, 416, 420, 430, 431, 03Х18Н11, 06Х18Н11, 08Х18Н10, 08Х18Н10Т, 12Х18Н10Т и т.п. Формирует валик с минимальным усилением, имеет пониженное тепловложение и устойчиво горит на малых токах.

SFA/AWS A5.4: E308H-15

Электрод ESAB для сварки изделий из нержавеющих сталей типа 08Х18Н10, 12Х18Н10T, AISI 304, 304H, 321 и т.п., работающих при высоких температурах (до +700°C) когда к металлу шва не предъявляют жесткие требования по стойкости к межкристаллитной коррозии.

SFA/AWS A5.4: E308L-17

Электрод ESAB общего назначения для сварки изделий из нержавеющих сталей типа 08Х18Н10, 12Х18Н10T, AISI 304, 321 и т.п., работающих при температурах до +400°C. Легко зажигается, дает хорошее формирование шва, при сварке шлак самоотделяется. Лидер продаж!

SFA/AWS A5.4: E347-15

Электрод ESAB для сварки изделий длительное время работающих при температурах до +400°С. Свариваемые стали: 03Х18Н11, 06Х18Н11, 08Х18Н12Б, 08Х18Н10, 08Х18Н10Т, 12Х18Н10Т, 321, 347 и т.п. Обеспечивает стойкость против межкристаллитной коррозии.

SFA/AWS A5.4: E316L-16

Электрод ESAB для сварки тонкостенных изделий из нержавеющих сталей с содержанием молибдена, типа 03Х17Н14М2, 10Х17Н13МЗТ, 316 и т.п. Специально разработан для сварки тонкостенных труб и тонколистовых конструкций на спуск, обеспечивая минимальные сварочные деформации.

Читать еще:  Можно ли сварить нержавейку простым электродом?

SFA/AWS A5.4: E316L-17

Электрод ESAB общего назначения для сварки нержавеющих сталей с содержанием молибдена, типа 03Х17Н14М2, 10Х17Н13МЗТ, 316 и т.п. Легко зажигается, дает хорошее формирование шва, при сварке шлак самоотделяется. Обеспечивает стойкость против межкристаллитной коррозии.
Жаростойкость до 400°C.

SFA/AWS A5.4: E309L-17

Электрод ESAB для разнородных сварных соединений, нержавеющих сталей 302, 304, 308, 403, 410, 416, 420, 430, 431, 03Х18Н11, 06Х18Н11, 08Х18Н10, 08Х18Н10Т, 12Х18Н10Т и т.п. с углеродистыми. Обеспечивает стойкость металла шва против межкристаллитной коррозии.

Электрод ESAB для трудносвариваемых сталей, для наплавки штампов и инструментов, работающих при высоких температурах. Применяется для сварки упрочняемых сталей (деталей, инструментов, пружин и т.п.) часто неизвестного состава. Рекомендуется также для сварки разнородных сталей.

Электроды ESAB для сварки алюминиевых сплавов (2 из 3) См. все(3)

Электрод ESAB для сварки проката свариваемых алюминиевых сплавов таких как алюминий-магниевые и алюминий-марганцевые, неупрочняемых прокатом алюминиевых сплавов, использующихся для изготовления емкостей в молочной и пивоваренной промышленности, различных конструкций в судостроении.

Электрод ESAB для сварки литейных алюминиевых сплавов и проката свариваемых алюминиевых сплавов. Используется при сварке силуминовых деталей в двигателях внутреннего сгорания, различных конструкций в строительстве.

Электроды ESAB для сварки сплавов на основе никеля (2 из 8) См. все(8)

(Старое название OK 92.35)

Электрод ESAB для сварки никелевых сплавов с углеродистыми сталями, наплавки поверхностей инструментов и деталей, работающих при высоких температурах, для наплавки поверхностей вентилей и насосов, когда к ним предъявляются требования по коррозийной стойкости.

Электрод ESAB с основным покрытием для сварки сплавов на основе никеля. Широко применяется при сварке конструкций в нефтеперерабатывающей промышленности и при производстве сульфата аммония. Применяется также для сварки никелевых сплавов с углеродистыми сталями и нержавеющих сталей с низколегированными.

Электроды ESAB для сварки медных сплавов (1 из 2) См. все(2)

DIN 1733: EL-CuSn7

Электрод ESAB для сварки меди и бронзы, особенно оловянной бронзы. Может использоваться для плакирования сталей и мелких ремонтных работ на чугунных деталях.

Электроды ESAB для сварки чугуна (4 из 4) См. все(4)

(Новое название OK Ni-CI)

Никелевый электрод ESAB для сварки всех типов чугунов с минимальным предварительным подогревом. Наплавленный металл эластичен и подвергается механической обработке. Рекомендуется для заварки каверн, трещин и общего ремонта. Не рекомендуется применять для сварки более чем в два слоя. Не рекомендуется применять для сварки чугунов с высоким содержанием серы или фосфора.

(Новое название OK NiFe-CI-A)

Железоникелевый электрод ESAB для сварки серого, высокопрочного и ковкого чугуна, ремонта чугунных изделий, а также сварки чугуна со сталью. Сварка выполняется на холодную или с незначительным подогревом. Подходит для сварки изделий из чугуна, работающих при высоких нагрузках, а также серых чугунов с повышенным содержанием серы и фосфора.

(Новое название OK NiFe-CI)

Железоникелевый электрод ESAB для сварки как чугуна так и чугуна со сталью. Применяется для холодной сварка всех типов чугунов. Особенно он подходит для сварки чугунов с шаровидным графитом, т.к. обладает наиболее высокой прочностью. Он также рекомендуется в случаях, когда требуется обрабатываемость наплавленного металла на том же уровне, что и чугуна, имеющего твердость около 250 HB. Наплавленный металл обладает меньшей чувствительностью к растворению в нем серы и фосфора в сравнении с OK 92.18.

(Новое название OK NiCu 1)

Медноникелевый электрод ESAB для сварки серого, высокопрочного и ковкого чугуна. Сварка выполняется на холодную или с незначительным подогревом. Шов хорошо обрабатывается. Рекомендуется применять, когда необходимо получить наплавленный металл по цвету похожий на чугун.

Электроды ESAB для наплавки (4 из 15) См. все(15)

Популярный нержавеющий электрод ESAB применяется для наплавки валов, осей и шестерней из легированных сталей, буферных слоев перед упрочняющей наплавкой, а также для ремонта трещин и устранение дефектов в стальных отливках, ремонта навесного оборудования землеройной техники (приварка постелей, наконечников, зубьев и т.д.).

(Старое название OK 83.28)

Электрод ESAB для наплавки с целью восстановления геометрии и нанесения буферного слоя перед упрочняющей наплавкой. Применяется для наплавки зубчатых колес, цапф, буров для земли, валов и рельс из углеродистой стали, постелей зубьев и самих зубьев ковшей, крановых колес, направляющих роликов и других деталей, работающих в условиях ударного износа. (Старое название OK 83.28)

Электрод ESAB для наплавки инструмента, пуансонов и матриц для холодной штамповки, кулачков валов, седел клапанов, зубчатых колес, осей и других деталей, работающих в условиях трения металла о металл и в коррозионной среде. Прочностные свойства наплавленного металла сохраняются до температуры 500°С.

(Старое название OK 84.78)

Электрод ESAB для наплавки деталей, подверженных абразивному износу и воздействию коррозионной среды, например зубьев ковшей экскаваторов, деталей почвообрабатывающих машин, миксеров, каналов шнеков, дымососов, дробилок и т.д. (Старое название OK 84.78). Дает наплавленный металл с включениями карбида-хрома на аустенитной основе.

Наплавка сварочными электродами на наклонной поверхности

Наплавка электродами сварочными на наклонной поверхности позволяет выполнять все слои (или валики) высотой, которая равна или несколько более диаметра самого сварочного электрода. При этом валики направляют обычно без поперечного манипулирования сварочным электродом. При наплавочных работах на наклонной поверхности жидкий металл шва сварочного и его вершина несколько смещаются в нижнюю часть сварочного шва. Верхняя часть сварочного слоя, от его верхнего края до вершины шва, образует площадку. Одновременно основная часть жидкого шлака стекает и затем застывает в нижней части слоя шва. При этом в верхней части слоя наплавленного металла шлак ложится очень тонким слоем. Именно это и позволяет выполнять все последующие валики не отбивая шлака. Если говорить о силе сварочного тока, то она должна быть на десять процентов больше, чем при наплавке с удалением шлака после каждого прохода сварочного электрода.

При наплавке очередного валика нижняя часть сварочной ванны должна доходить до вершины предыдущего сварочного шва. Это позволяет выполнять формирование валика сварочного без перепадов, либо с самыми минимальными перепадами между слоями.

Держать электрод сварочный рекомендуется только вертикально относительно полочки предшествующего валика, чтобы он при этом не отставал сзади и не забегал вперед.

Данный способ сварки электродом по шлаку рекомендуется использовать с учетом толщины, а также размера рабочего изделия. Не допускать при этом полного остывания шлака либо его перегрева.

Такой способ «сварки по шлаку» позволяет производить наплавку с высокой производительностью и очень высоким качеством.

Основные преимущества этого способа сварки электродом по шлаку перед сваркой с отбивкой шлака в следующем:

1. Значительно сокращается время, которое затрачивают на отбивание сварочного шлака после наплавки каждого слоя.

2. Начало сварки новыми сварочным электродом и, соответственно, зажигание дуги происходит под шлаком. Это исключит формирование пор стартовых.

3. При сварке «по шлаку» обеспечивается хорошая защита и металла шва, и самой сварочной ванны.

4. Присутствие дополнительного шлака способствует нахождению металла шва более длительное время в жидком состоянии и формированию плотного валика сварочного без каких-либо перепадов между чешуйками.

5. «Сварка по шлаку» защищает от брызг наплавочный слой. Это обеспечивает чистоту наплавки и исключает время зачистки каждого наплавленного валика сварочного от брызг при многослойной наплавке.

Метод «сварки по шлаку» рекомендуется применять, главным образом, для наплавки углеродных сталей сварочными электродами с основным покрытием. Не рекомендуется использовать этот метод с коррозийно – стойкими электродами – ОЗЛ-6, ОЗЛ-8, ОЗЛ-312, ЭА-400/10у. Дело в том, что застывший после сварки этими электродами шлак очень тугоплавкий. Это в свою очередь, ведет к дефектам наплавки и сварки – шлаковым включениям и непроварке.

В ходе наплавки небольших участков на металле толщиной менее десяти миллиметров, при работе с мелкими изделиями, нельзя допускать перегрева основного соединяемого металла. С этой целью необходимо ограничить саму длительность непрерывного выполнения слоев.

Необходимо знать, что метод «сварки по шлаку» требует хороших навыков, опыта, знаний и выполняется только сварщиками достаточно высокой квалификации.

Наплавка Металлов.

Плазменная наплавка позволяет раздельно регулировать нагрев и плавление присадочного и основного металлов. Благодаря этому появляется возможность производить наплавку при малой доле участия основного металла в образовании наплавленного слоя. Принципиальные обобщенные схемы плазменной наплавки представлены на (рис. 3). В зависимости от требований процесс может осуществляться с использованием трех дуг.

Читать еще:  Хранение электродов на складе

Рис. 3 Схемы плазменной наплавки с присадочной проволокой (а) и с применением в качестве присадочного материала порошка (б):

1 – вольфрамовый электрод; 2 – водоохлаждаемое сопло; 3 – охлаждающая вода; 4 и 6 сопротивление; 5 – источник питания; 7 – присадочная проволока; 8 – изделие; 9 – плазменная дуга; 10 – плазмообразующий газ; 11 – транспортирующий газ; 12 – порошок.

Одна дуга горит между электродам и соплом, плазма этой дуги обеспечивает устойчивое существование остальных дуг, а так же нагрев основного и присадочного металла. Вторая дуга горит между электродом и присадочной проволокой; третья – между электродом и деталью. Обычно третью дугу не используют. Способ плазменной наплавки с токоведущей присадочной проволокой обеспечивает устойчивое проведение процесса наплавки с малой долей участия основного металла: при наплавке коррозионно-стойкой стали на низкоуглеродистую m = 0,03÷0,05; при наплавке бронзы на сталь m = 0,005. Помимо присадочной проволоки для плазменной наплавки используют порошки.

Электрошлаковую наплавку осуществляют по двум схемам: при вертикальном расположении наплавляемой поверхности и горизонтальном.

Рис. 4 Электрошлаковая наплавка наружной цилиндрической поверхности проволочным электродом:

1 – электродная проволока; 2 – наплавляемая деталь; 3 – шлаковая ванна; 4 – кристаллизатор; 5 – наплавленный слой; 6 – сварочная ванна.

Первая схема (рис. 4)напоминает схему электрошлаковой сварки; в зависимости от конфигурации наплавляемой поверхности в качестве электродов используют либо ленту (в основном наплавка на плоскую поверхность), либо электродную проволоку. При использовании проволоки для равномерности проплавления металла основного, проволоку перемещают вдоль наплавляемой поверхности. При наплавке на цилиндрическую поверхность этого достигают вращением детали или придания электродам колебательного движения по окружности, эквидистантой наплавляемой поверхности. Рассматриваемая схема наплавки обеспечивает наплавку с довольно малой долей участия основного металла ( m = 0,1). Тем ни менее ее используют в тех случаях, когда толщина наплавляемого слоя превышает 16 – 20 мм. При меньшей толщине слоя трудно поддерживать электрошлаковой процесс из-за перегрева и закипания шлака.

Наплавка металла – как скрыть дефекты под качественным слоем?

Технология наплавки металла может быть самой различной – ручной, автоматизированной, с использованием защитных сред и без них. Так что рассмотрим основные виды подобных работ, их плюсы и минусы, а также необходимое оборудование.

1 Занимаемся наплавкой металла – суть процесса

В общем, наплавкой металла называют попросту нанесение на поверхность какого-либо изделия слоя раскаленного металла либо же сплава посредством сварки плавлением. Эта технологическая операция позволяет восстановить первоначальные размеры элементов, износившихся вследствие эксплуатации. Однако это не единственное предназначение вышеуказанного процесса, также с помощью наплавки металла можно получить необходимые свойства, например, повысить твердость покрытия, увеличить его износостойкость и т. д.

В зависимости от того, какого же результата вы желаете добиться, и подбирается наплавочный материал. Когда необходимо просто восстановить габариты изделия, то он будет схож по составу с металлом основы, а вот с целью получения особенных характеристик берется уже и соответствующий, более прочный наносимый сплав, чаще всего легированный.

Теперь же поговорим о требованиях и преимуществах данного процесса. Глубина проплавления основного металла, а также перемешивание основного и наплавляемого слоя должны быть минимальными. Кроме того, необходимо чтобы и остаточные деформации с припусками для последующей обработки тоже соответствовали наименьшим значениям. Ну а дальше уже поговорим обо всех плюсах и минусах, присущих конкретному способу.

2 Технологии наплавки металла

Выяснив, когда необходимо проводить наплавочные работы, и что это такое, следует разобраться с видами этой операции. Начнем с дуговой технологии. В этом случае с помощью одноименной сварки наносят на поверхность изделия слой металла. Для этого используются либо покрытые электроды, либо же специальные сварочные пасты. Достоинством первого варианта является низкая стоимость расходных материалов, а вот к недостаткам стоит отнести большую глубину провара и низкую степень автоматизации процесса. Во втором же случае достаточно высокая производительность, минимальная глубина провара и опять-таки способ довольно экономичный, но при этом очень сильная тепловая нагрузка.

Существует еще техника дуговой наплавки металла в инертных газах, в этом случае могут использовать как плавящиеся, так и неплавящиеся электроды. Плюсами первых можно назвать возможность автоматизировать процесс и относительно небольшие затраты энергии. А вторых – небольшой провар и экономичность. Что же насчет недостатков, так он для обоих вариантов одинаковый – ограниченные затраты мощности. В основном наплавкой металла в среде защитных газов пользуются тогда, когда нет возможности осуществить следующий вид.

Наплавка под флюсом отличается довольно высокой производительностью, а также минимальными потерями электродного металла. Кроме того, отсутствует необходимость в дополнительных средствах защиты, так как ни светового излучения, ни разбрызгивания металла нет. Да и сделать это сможет сварщик без особой квалификации. Правда, есть и свои нюансы, например, оборудование является весьма дорогостоящим, так что вряд ли кто-то захочет приобретать его для домашнего использования. А из-за достаточно большой зоны нагрева данный способ неприменим для мелких деталей. Также стоит отметить и значительное снижение усталостной прочности металла.

Если же выделение тепла происходит в шлаковой ванне в результате пропускания через нее сварочного тока, при этом там же и осуществляется расплавление основного и присадочного металлов, то речь идет об электрошлаковой наплавке металлов (ЭШН). Данный процесс отличается великолепными показателями производительности, возможностью получения слоя практически любой толщины и небольшой глубиной проплавления металла основы. Кроме того, он не слишком дорогой, при этом осуществляется очистка материала от всех вредных примесей. Однако ни в коем случае не допускается прерывание наплавки, также нужно потратить время на предварительную подготовку технологической оснастки. И велика вероятность, что шов, а также зона термического влияния будут иметь крупнозернистую структуру.

В принципе, основные виды наплавки уже рассмотрели кроме электроконтактной, так что скажем еще пару слов и о ней. Сущность этого метода заключается в нагреве присадочного материала за счет пропускания через него импульсов тока и одновременного сдавливания. Так и получается надежное соединение. К преимуществам следует отнести высокую производительность, минимальную зону термического влияния, так как время воздействия тока незначительно. Также отсутствует необходимость в дополнительной защите, ведь в атмосферу не выделяются вредные испарения, да и нет столь вредного для органов зрения излучения. Однако машины, на которых осуществляется подобное наращивание металла, весьма громоздкие и дорогие, что, естественно, относится к минусам данной технологии.

Основные методы наплавки: дуговая, под флюсом, в инертных газах, электрошлаковая и электроконтактная.

3 Оборудование для наплавки металла

Ну что же, пришло время поговорить и про оборудование для наплавки. Для ручного способа понадобится, в принципе, все то же самое, что и для РДС (ручной дуговой сварки). То есть, источник питания, сварочные провода, стол, где будет установлено обрабатываемое изделие, и расходные материалы. Не забывайте о технике безопасности, так что вам еще понадобятся защитные очки, роба, рукавицы и т. д.

Наплавки металлов под флюсом, электрошлаковая и электроконтактная осуществляются на специальных машинах. Поэтому для проведения наплавочных работ под слоем флюса основными узлами являются головки, конструкция которых зависит от вида обрабатываемой детали, а также токарный станок, на его суппорте и фиксируется вышеуказанный элемент. Наплавочная головка состоит из механизма подачи проволоки, а также мундштука и бункера для флюса. В большинстве случаев пользуются источником постоянного тока.

Установка для электрошлаковой наплавки металла также состоит из сварочной головки, механизмов, которые отвечают за перемещение аппарата, и непосредственно электродов. Еще необходимо и специальное устройство, обеспечивающее удержание сварочной ванны в нужном зазоре, и, естественно, источник питания. Вспомогательными элементами выступают бункер, в который засыпается флюс, катушки под проволоки и устройства управления. Машины для электроконтактной наплавки металла бывают точечными и шовными, в зависимости от вида соединения. Основной их узел – вращающийся привод, в котором фиксируется электрод, механизм сжатия и источник питания. В комплекте также есть пульт, с помощью которого задаются нужные параметры. Вот так можно представить основные устройства для наплавки металла различного типа.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector