27 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ионизационный электрод контроля пламени принцип работы

Приборы контроля наличия пламени.

Методы контроля наличия пламени при сжигании в топках котлов газа и жидкого топлива можно подраз­делить на две разновидности: прямого и косвенного контроля. К методам прямого контроля относятся ультразвуковой, термометрический, ионизационный и наиболее часто применяемый фотоэлектрический. К ме­тодам косвенного контроля горения топлива можно от­нести контроль за разрежением в топке, за давлени­ем топлива в подающем трубопроводе, за давлением или перепадом его перед горелкой и контроль за на­личием постоянного источника воспламенения.

В отечественных отопительных котлах, газовых ка­лориферах и малых газовых нагревателях применяют приборы, которые основаны на ионизационном, фото­электрическом и термометрическом методах контроля. Ионизационный метод контроля основан на электриче­ских процессах, возникающих и протекающих в пламени. К таким процессам можно отнести способность пламени проводить ток, выпрямлять переменный ток и возбуждать в электродах, помешенных в пламя, соб­ственную э.д.с., а также периодическую пульсацию электрических колебаний в пламени, что во всех случаях обусловливается степенью ионизации пламени.

Фотоэлектрический метод контроля за горением жид­кого топлива заключается в измерении степени види­мого и невидимого излучения пламени фотодатчиками как с внешним, так и с внутренним фотоэффектом. Ме­тоды контроля наличия пламени нашли много конструктивных решений.

Термоэлектрический метод контроля. Устройство, основанное на термоэлектрическом методе контроля, состоит из термопары — датчика и электромагнитного клапана. Термопара помещена в зоне горения запаль­ной горелки котла, а электромагнитный клапан уста­новлен на газопроводе, по которому подается газ в запальную горелку.

Большое распространение получило устройство тер­моэлектрического контроля, разработанное институтом Мосгазпроект. Оно применяется в отопительных и пи­щеварочных котлах, газовых отопительных печах и емкостях водонагревателей. Принцип работы термо­электрического устройства контроля пламени заклю­чается в следующем. Запальная горелка действует постоянно, обеспечивая надежное зажигание и работу основных рабочих горелок. Газ на запаль­ной горелке воспламеняется от термопары и обес­печивает защиту против отрыва пламени. Термопара вырабатывает э.д.с., за счет которой удерживается в открытом состоянии электромагнитный клапан.

При погасании пламени горелки температура тер­мопары понизится настолько, что возбуждаемая ею э.д.с. будет недостаточна для удержания якоря в открытом положении, в результате чего клапан под действием пружины закроет поступление газа в запальник и горелку котла. Последующий розжиг котла может быть произведен только вручную после ликвидации причин, вызванных отключением по­дачи газа.

Ионизационный метод контроля. Ионизационный ме­тод наличия пламени основан на использовании элек­трических свойств пламени. Устройства безопасности, основанные на этом методе, обладают преимуществом, состоящим в том, что они практически безынерционны,так как при погасании контролируемого пламени ионизационные процессы прекращаются, и это приводит практически к мгновенному отключению подачи газа в горелки котлоагрегата. Этот метод позволил разрабо­тать приборы контроля, основанные на электропровод­ности пламени, возникновении э.д.с. пламени, его вентильном эффекте и электрической пульсации. За рубежом уделяется наибольшее внимание мето­ду контроля наличия пламени, основанному на вен­тильном эффекте.

В устройствах безопасности горения, где ис­пользуется этот метод, не наблюдается ложного сиг­нала при замыкании в цепи датчиков.В системе комплексной автоматики для отопитель­ных котлов был применен прибор контроля пламени, работа которого основана на вентильном эффекте. При наличии пламени переменное напряжение, приложенное между введенным в пламя электродом и корпусом горелки, выпрямляется.

При погасании пламени действие вентильного эффекта в межэлектродном переходе прекращается и управляющий сигнал на вход усилителя не поступает. Правая часть лампы запира­ется, реле обесточивается и дает команду на отключение газа. Аналогичное действие произойдет при за­мыкании электрода на корпус горелки.

Основным недостатком схемы прибора является то, что в ней открытое (рабочее) положение правой час­ти триода обеспечивается закрытием левой его части. Метод контроля, использующий электрический по­тенциал пламени.Этот метод основан на введении в факел металлических электродов, которые дают раз­ность потенциалов (э.д.с.), переменных по амплитуде, но постоянных по знаку. Величина э.д.с. пропорциональна разности температур между электродами и достигает 2 В. На этом принципе был создан прибор . Принцип работы при­бора э.д.с. заключается в следующем при отсутствии пламени в анодных цепях лампы текут равные токи. Возникающий в обмотках реле Р1 и Р2 под действи­ем тока магнитный поток равен нулю, так как обмот­ки поляризованного реле включены встречно. Якорь Реле в этом случае находится в положении, при кото­ром цепь питания электромагнитного клапана-отсекателя разорвана, и газ в горелку не поступает. При появлении пламени возникает отрицательная э.д.с., которая подается на сетку левой части триода, что приводит к уменьшению тока в обмотке Р1. Под дей­ствием результирующего магнитного поля якорь реле изменит свое положение и, замкнув контакты, даст соответствующую команду. При погасании пламени или замыкании в цепи датчика э.д.с. исчезнет и схема придет в исходное положение.

Метод контроля, использующий электрическую пульсацию пламени. Для любого факела независимо от вида сжигаемого топлива и типа горелочного устрой­ства характерным признаком является пульсация про­цессов, сопровождающих горение. К таким процессам относятся температура пламени, давление в камере сгорания, интенсивность излучения и ионизация факе­ла пламени. Частота и амплитуда пульсаций зависят от скорости истечения газовоздушной смеси из го­релки и условий перемешивания газа с воздухом. При неудовлетворительном перемешивании газа с воздухом горение сопровождается отдельными вспышками. Пос­редством чувствительного гальванометра можно за­мерить величину пульсации ионизационного тока. Это свойство пламени дает возможность обеспечить самоконтроль автоматики от опасного замыкания в цепи электродного датчика.

В схеме используется собственный пульсирующий потен­циал, возникающий на электродах. При включении в цепь ионизационного датчика источника постоянного тока пульсацию на электродах можно усилить. В лю­бом случае при замыканиях в цепи датчика, а также при погасании пламени подача управляющего сигнала на вход усилителя прекращается, и автоматика сраба­тывает на отключение газа. От сигнала постоянного тока данная схема не работает, так как на входе пер­вого каскада включен конденсатор. Приборы контроля пламени этого типа, работающие на переменной сос­тавляющей электрического сигнала, очень чувстви­тельны к помехам, частота колебания которых близ­ка к частоте пульсации факела. Вследствие этого при установке таких приборов на объектах требуется обя­зательная экранировка входных цепей усилителя и ли­ний связи, соединяющих электродный датчик с прибо­ром.

Выбор инвертора для газового котла с ионизационным датчиком

За сгоранием газа в большинстве современных котлов следит ионизационный электрод, ток которого постоянно оценивается блоком контроля пламени. Благодаря ему чётко отслеживаются колебания давления газа и энергоотдача, в результате чего процесс горения происходит с наибольшей эффективностью.

Принцип работы автоматики газового котла

Контроль пламени по току ионизации

Контроль пламени в горелке в большинстве современных котлов осуществляется с помощью ионизационного электрода. Принцип контроля пламени по току ионизации основан на том, что при сжигании газа образуется множество свободных электронов и ионов. Эти частицы «притягиваются» к ионизационному электроду и вызывают протекание тока ионизации величиной в десятки микроампер (зависит от модели котла). Ионизационный электрод соединяется с входом блока контроля тока ионизации (автоматом горения). Если при горении пламени запальника образуется достаточное количество свободных электронов и отрицательных ионов, то автомат горения разрешает работу (розжиг) основной горелки. В случае если интенсивность ионизации падает ниже определенного уровня, то основная горелка отключается даже в том случае, если она работала нормально. В простейших котлах оценивается наличие тока ионизации. Причиной выхода значения тока ионизации из заданного диапазона обычно является отсутствие требуемого соотношения газ/воздух в запальнике, загрязнение или обгорание ионизационного (контрольного) электрода, но также может являться уменьшение сопротивления между ионизационным электродом и корпусом запальника, которое чаще всего происходит из-за оседания токопроводящей пыли на запальное устройство. В современных котлах автомат горения выполняет не только функцию контроля наличия пламени, — на нём строиться вся автоматика управления горелки. По величине тока ионизации блок контроля пламени понимает, как происходит горение и, основываясь на этих данных, управляет скоростью вентилятора и клапаном подачи газа. В некоторых запальных устройствах ионизационный электрод выполняет функцию запального электрода. В этом случае на него в течение фиксированного времени подается высокое напряжение с запального трансформатора для поджига запальника. После того как поджиг запальника произведен, контрольный электрод переходит в режим контроля тока ионизации – цепи поджига отключаются и электрод соединяется с входом автомата горения. В этом случае возможна еще одна причина пропадания сигнала ионизации, связанная с обрывом во вторичной обмотке трансформатора. Но искра в этом случае может, все равно, нормально генерироваться, поэтому данную неисправность иногда трудно определить.

Но также на величину тока ионизации может влиять наводка от инвертора в инверторном режиме, несинусоидальное напряжения инвертора, некачественный ноль или плохое заземление. В этом случае блок управления получает искаженную величину тока ионизации, что может привести к неправильной оценке процесса горения и неверной работе автомата горения: неустойчивому пламени, срыву пламени или полному прекращению подачи газа. Исключаем несинусоидальные инверторы из-за их непригодности для работы с котлами, а также инверторы, дающие синусоиду лишь в ограниченном диапазоне мощности (некоторые модели Cyberpower и др.). Если котёл нормально работает от сетевого напряжения, а в инверторном режиме перестаёт работать, то причиной может быть наводка инвертора на нейтраль (при условии правильного подключения нуля и фазы). Проверить это довольно просто. Для этого необходимо измерить напряжение между нулём и землёй на входе инвертора и сравнить полученное значение со значением, полученным на выходе инвертора (между нулём и землёй) в режиме электропитания котла от батареи (инверторный режим). Для включения инверторного режима необходимо выключить фазу защитным автоматом, не вынимая сетевую вилку инвертора из розетки, что приведёт к отключению нуля на входе инвертора и соответственно на его выходе. В идеале полученные значения должны совпасть, что будет свидетельствовать, что инвертор не вносит потенциал на нулевой провод. Синусоидальные инверторы ECOVOLT специально разработаны для работы с котлами, оснащёнными ионизационными датчиками, и, в отличие от других производителей инверторов, не вносят изменений на ток ионизации и не влияют на работу автомата горения.

Ионизационный электрод контроля пламени принцип работы

Контроль пламени, блоки БКП-КЭ, БКП-ФД

Для надежной работы котлов, печей и др. объектов, в которых осуществляется процесс сжигания топлива, требуется контроль пламени.

Для контроля пламени в основном используются фотодатчики ФД на основе фоторезисторов ФР-1-3, контрольные электроды КЭ (ионизационные датчики), и в меньшей степени другие.

Читать еще:  Контрольный электрод наличия пламени

Обычно устройство контроля пламени состоит их датчика (ФД, КЭ), монтируемого непосредственно на горелке и электронного блока контроля пламени (БКП-ФД, БКП-КЭ соответственно).

Принцип действия фотодатчика пламени основан на предварительном преобразовании частоты пульсации сопротивления фотодатчика, соответствующей частоте пульсации интенсивности излучения видимого света контролируемого пламени, в напряжение постоянного тока и последующем преобразовании его в дискретный выходной сигнал.

Устойчивая работа блока БКП-ФД достигается только при правиль­ной установке фотодатчиков. При их установке соблю­дать следующие требования:

— ориентировать фотодатчик ФД в зону максимальной интенсивнос­ти пульсаций излучения пламени;

— между пламенем и фотодатчиком ФД не должно быть препятствий,
пламя должно постоянно находиться в «поле зрения» фотодатчика;

— фотодатчик ФД должен устанавливаться с наклоном, предотвра­щающим оседание пыли и мусора на стекло чувствительного элемента;

— температура фотодатчика ФД не должна превышать 50°С, поэтому
его рекомендуется устанавливать на специальных ту­бусах, между корпусом фотодатчика и горелочным устройством предусмотреть теплоизоляцию, с помощью специального отвода дутье­вого устройства горелки необходимо производить постоянный об­дув воздухом корпуса фотодатчика.

Не допускается установка электронного блока БКП-ФД в непосредственной близос­ти от цепей с индуктивными нагрузками.

До подключения фотодатчика ФД в схему контроля и защиты тепловой установки рекомендуется проверить работоспособность блока БКП-ФД путем использования пламени ручного запальника.

В случае погашения пламени обычно прекращаются пульсации освещенности фотодатчика ФД, электронный блок БКП-ФД размыкает выходной ключ, блок автоматики автоматически прекращает подачу топлива для остановки объекта.

Следует заметить, что топка котла может быть раскаленной и освещать фотодатчик, при этом электронный блок БКП-ФД не должен воспринимать это как наличие пламени.

Принцип действия контроля пламени с контрольным электродом КЭ основан на использовании детекти­рующего свойства пламени между контрольным электродом КЭ и корпу­сом горелки , находящимися в зоне пламени под действием переменного напряжения. Контрольный электрод КЭ с корпусом горелки выполняет роль ионизационного датчика пламени.

Устойчивая работа блока БКП-КЭ достигается только при правиль­ной установке контрольного электрода КЭ и использовании для розжига газа блока запального устройства БЗУ2. При больших скоростях движения газовоздушной смеси, вытекающей из горелок, ионизированные частицы относятся по направлению потока. Для обеспечения в этих условиях детектирующего действия пламени следует так расположить контрольный электрод, чтобы поток не препятствовал движению частиц под действием электрического поля от электрода к металлическому корпусу горелки, являюще­муся вторым электродом. Это, например, может быть достигнуто путем установки дополнительной металлической детали, связанной электрически с корпусом горелки.

Схема установки контрольного электрода КЭ с горелкой ИГК-15-100 показана на рисунке.

1- огнеупорная кирпичная кладка

3- контрольный электрод

4- закладная труба Ду-50 (закладывается при кладке)

7- стабилизатор горелки

Для надежной работы горелок и контрольного электрода КЭ в теплогенераторах предлагаем учесть следующие рекомендации:

— торец горелки должен быть установлен заподлицо с кирпичной огнеупорной кладкой для предотвращения сгорания пластин стабилизатора горелки.

— КЭ должен быть установлен под углом 30-40 градусов к оси горелки. Кончик КЭ должен находиться на расстоянии 4-5-6 см от пламени, т.к. в этом слое от пламени находится ионизационный слой. В самом пламени ионизационного слоя нет, поэтому кончик КЭ должен входить в пламя не более 1 см, это предотвращает перегрев КЭ.

220В 50 Гц электропитание блока БКП-КЭ

3 Корпус горелки (запальника)

4 Стержень контрольного электрода

5-6 Контакты выходного реле БКП-КЭ

— контакты 5-6 замкнуты – пламя есть

— контакты 5-6 разомкнуты – пламени нет

— допускается подключение 2-х КЭ параллельно, если R изоляции ≥ 40 мОм при U = 250 V 50 Гц

Схема подключения блоков БКП и БЗУ2

Внимание! Из-за ошибок при монтажных работах надежность блоков БКП и БЗУ2 может значительно уменьшаться, поэтому напоминаем, что необходимо строго соблюдать требования изложенные в руководстве по эксплуатации блоков БКП и БЗУ2, а все указанные в приведенной схеме- функциональные соединения выполнить обязательно проводами, не рассчитывая на возможные связи через металлические конструкции тепловой установки. Высоковольтный провод поместить в заземленный бронешланг и проложить совершенно отдельно от остальных цепей. Его длина должна быть как можно короче (не более 0,7 м). Сказанное учитывать и при замене блока БЗУ2 с катушкой зажигания на трансформатор зажигания или другой источник высокого напряжения. Подключение проводов к корпусам основной и запальной горелок должно быть непосредственное. После монтажа убедиться в этом с помощью прибора. Проверить исправность высоковольтного разрядника запальника, состояние его изоляции и величину искрового зазора (между корпусом и электродом не более 5 мм). В случае отклонения от рекомендаций возможно поступление высокого напряжения на блоки и их выход из строя.

Вперед

Контроль наличия пламени

Тепловые агрегаты, работающие на природном газе (печи, котлы, стенды нагрева и т.п.) должны оборудоваться системой контроля наличия пламени. В процессе работы тепловых агрегатов возможны ситуации, при которой пламя горелки (факел) потухнет, но газ будет продолжать поступать во внутреннее пространство агрегата и окружающую среду и при наличии искры или открытого огня возможно воспламенение этого газа и даже взрыв. Наиболее часто потухание пламени происходит из-за отрыва факела.

Наличие пламени контролируют либо с помощью ионизационного электрода, либо с помощью фотодатчика. Как правило, с помощью ионизационного электрода контролируют горение запальника, который, в свою очередь, в случае необходимости воспламенит основную горелку. Фотодатчиками контролируют пламя основной горелки. Фотодатчик для контроля пламени запальника не применяют ввиду малого размера пламени запальника. Применение ионизационного электрода для контроля пламени основной горелки не рационально, так как электрод, помещенный в пламя основной горелки будет быстро обгорать.

Фотодатчики различаются по чувствительности к различной длине волны светового потока. Одни фотодатчики реагируют только на видимый и инфракрасный спектр светового потока от горящего пламени, другие воспринимают только его ультрафиолетовую составляющую. Самым распространенным фотодатчиком, реагирующим на видимую составляющую светового потока, является датчик ФДЧ.

Световой поток воспринимается фоторезистором датчика, и после усиления преобразуется либо в выходной сигнал 0-10В, пропорциональный освещенности, либо подается на обмотку реле, контакты которого замыкаются, если освещенность превышает установленный порог. Тип выходного сигнала — сигнал 0-10В или контакты реле — определяется модификацией ФДЧ. Фотодатчик ФДЧ обычно работает с вторичным прибором Ф34. Вторичный прибор обеспечивает питание ФДЧ напряжением +27В, на нем также выставляются пороги срабатывания в том случае, если используется ФДЧ с токовым выходом. Кроме того, в зависимости от модификации, Ф34 может контролировать сигнал от ионизационного электрода запальной горелки, управлять розжигом и работой горелки с помощью встроенных реле.

К недостаткам фотодатчиков видимого света можно отнести то, что они реагируют на любой источник света — солнечный свет, свет фонарика, световое излучение нагретых элементов конструкции, футеровки сталеразливочных ковшей и т.п. Это ограничивает их применение, например в стендах нагрева, так как ложные срабатывания от светящейся разогретой футеровки ковшей блокируют работу автоматики (ошибка «ложное пламя»). Наиболее широко ФДЧ применяются на печах сушки песка, ферросплавов и т.п. — там где температура нагрева редко превышает 300-400°С, а значит отсутствует свечение разогретых элементов конструкции печи.

Отличительной особенностью ультрафиолетовых фотодатчиков (УФД), например UVS-1 фирмы Kromschroeder, является то, что они реагируют только на ультрафиолетовую составляющую светового потока, излучаемого пламенем горелки. В световом потоке от разогретых тел, элементов конструкций печей, футеровки ковшей ультрафиолетовая составляющая мала. Поэтому к посторонней засветке датчик «равнодушен», как и к солнечному свету.

Основой этого датчика является вакуумная лампа — электронный фотоумножитель. Как правило, питаются эти датчики напряжением 220В и имеют токовый выходной сигнал, который меняется от 0 до нескольких десятков микроампер. К недостаткам ультрафиолетовых датчиков можно отнести то, что вакуумная лампа фотоумножителя имеет ограниченный срок службы. Через пару лет эксплуатации лампа теряет свою эмиссионную способность и датчик перестает работать. Сигнал с УФД передается на автомат горения серии IFS, функции которого аналогичны функциям Ф34.

Фотодатчики должны иметь, так сказать, визуальный контакт с пламенем горелки, поэтому они расположенны в непосредственной близости от него. Как правило, они распологаются со стороны горелки под углом 20-30° к ее оси. Из-за этого они подвержены сильному нагреву тепловым излучением от стенок агрегата и радиационному нагреву через визирное окно. Для зашиты фотодатчика от перегрева применяют защитные стекла и принудительный обдув. Защитные стекла производятся из жаропрочного кварцевого стекла и устанавливаются на некотором удалении перед визирным окном фотодатчика. Обдув датчика осуществляется либо вентиляторным воздухом (если горелка установки работает на вентиляторном воздухе), либо сжатым воздухом пониженного давления. Подаваемый объем воздуха осуществляет охлаждение фотодатчика не только за счет процессов теплоотдачи, но и из-за того, что вокруг него создается область повышенного давления, которая как бы отталкивает горячий воздух, не давая ему контактировать с датчиком.

Контроль наличия пламени запальника в большинстве случаев осуществляется ионизационным электродом. Принцип контроля пламени по ионизации основан на том, что при сжигании газа образуется множество свободных электронов и ионов. Эти частицы «притягиваются» к ионизационному электроду и вызывают протекание тока ионизации величиной в десятки микроампер. Ионизационный электрод соединяется с входом прибора контроля наличия ионизации (автоматом горения). Если при горении пламени запальника образуется достаточное количество свободных электронов и отрицательных ионов, то в автомате горения срабатывает пороговое устройство разрешающее работу (или розжиг) основной горелки. В случае если интенсивность ионизации падает ниже определенного уровня, то основная горелка отключается даже в том случае, если она работала нормально. На размещенном ниже видео показано, как благодаря нагреву воздуха между обкладками конденсатора (в нашем случае одна обкладка это контрольный электрод, другая обкладка — корпус запальника) в цепи начинает протекать электрический ток.

Основными причинами пропадания ионизации являются отсутствие требуемого соотношения газ-воздух запальника, загрязнение или обгорание ионизационного (контрольного) электрода. Еще одной причиной пропадания сигнала ионизации может являться уменьшение сопротивления между ионизационным электродом и корпусом запальника, которое чаще всего происходит из-за оседания токопроводящей пыли на запальное устройство.

Автомат горения часто выполняет не только функцию контроля наличия пламени — на нем строиться вся автоматика управления розжигом горелки, как, например, это реализовано в автомате горения ASL50P фирмы Hegwein.

Читать еще:  Какие электроды нужны для инверторной сварки?

Как правило, ионизационный электрод размещается вдоль оси запальной горелки, конец электрода должен находиться в «корне» пламени запальника. В некоторых запальных устройствах ионизационный электрод выполняет функцию запального электрода. В этом случае на него в течении фиксированного времени подается высокое напряжение с запального трансформатора для поджига запальника. После того как поджиг запальника произведен контрольный электрод переходит в режим контроля ионизации – цепи поджига отключаются и электрод соединяется с входом автомата горения. В этом случае возможна еще одна причина пропадания сигнала ионизации, связанная с обрывом во вторичной обмотке трансформатора. Но искра в этом случае может все равно нормально генерироваться, поэтому данную неисправность иногда трудно определить.

Большое значение для стабильной работы запального устройства имеет правильно выставленное соотношение газ-воздух. В большинстве случаев требуемые значения давления газа и воздуха приводятся изготовителем в паспорте запальной горелки. Не смотря на то, что говоря «соотношение газ-воздух» в большинстве случаев имеют в виду их объемное соотношение (один объем газа на десять объемов воздуха), но настраивают запальник, да и горелку, впрочем, тоже, по давлению, так как это сделать намного проще и дешевле. Для этого конструкцией запальника предусмотрено подключение контрольного манометра к газовому и воздушному тракту в определенных местах.

Ионизационный электрод крепиться к корпусу запальника через керамическую изолирующую втулку и соединяется с входом автомата горения экранированным одножильным кабелем. Если ионизационный электрод используется еще и в качестве запального, то с запальным трансформатором он соединяется специальным высоковольтным кабелем, например, ПВ-1. Изолирующая втулка изготавливается из керамики с большим содержанием Al2O3, которая характеризуется высокой механической прочностью, температурной стойкостью и электрической прочностью до 18 кВ . Ионизационный электрод изготавливается канталя — металлического сплава устойчивого к высоким температурам и электрохимической коррозии

Установки постоянно работающие при температурах свыше 800°С (мартеновские печи, например) могут и не оснащаться системами контроля наличия факела. Это связано с тем, что температура воспламенения газа находиться в пределах 645 – 750°С. Таким образом, в случае отрыва факела исходящий из сопла горелки газ воспламениться от разогретой кладки внутреннего пространства теплового агрегата. Очень часто перед соплом горелки выкладывают специальный горелочный камень – он воспламеняет поток газа и стабилизирует горение.

Для повышения надежности работы и уменьшения количества остановов установки из-за пропадания ионизации можно сделать контроль наличия пламени не постоянным, осуществляя его по схеме «ИЛИ». В этом случае, если установка прогрелась до температур свыше 750°С и сигнал ионизации с запальной горелки по какой то причине пропал, то основная горелка все равно продолжит работу.

Дополнительную информацию вы можете найти в разделе «Вопрос-ответ».

Комбинированный датчик контроля пламени

Рубрика: Технические науки

Дата публикации: 28.05.2018 2018-05-28

Статья просмотрена: 700 раз

Библиографическое описание:

Нефедьев, А. И. Комбинированный датчик контроля пламени / А. И. Нефедьев, А. А. Коноваленко. — Текст : непосредственный // Молодой ученый. — 2018. — № 21 (207). — С. 69-71. — URL: https://moluch.ru/archive/207/50699/ (дата обращения: 29.10.2020).

Стабильно горящее пламя в топках печей является необходимым и важным условием их работы [1,2]. Контроль за наличием пламени осуществляется при помощи специальных датчиков, основное предназначение которых заключается в обеспечении безопасного функционирования различных установок по сжигания твёрдого, жидкого или газообразного топлива [3,4]. Датчики и приборы для контроля пламени также участвуют в автоматическом или полуавтоматическом процессе розжига пламени, осуществляют постоянный контроль за процессом сгорания топлива с учётом всех требуемых условий и мероприятий по защите. Таким образом, надёжность и безотказность работы котельных установок всецело зависит от правильного выбора датчиков контроля пламени [5].

Для контроля наличия пламени при сжигании в топках котлов газа и жидкого топлива применяются как методы прямого контроля (ультразвуковой, термометрический, ионизационный, фотоэлектрический), так и методы косвенного контроля (контроль за разрежением в топке, контроль за давлением топлива в подающем трубопроводе, за давлением или перепадом давления перед горелкой, а также контроль за наличием постоянного источника воспламенения) [6].

В малых газовых нагревателях и отопительных котлах отечественного производства, газовых калориферах применяют приборы, которые основаны на фотоэлектрическом, термометрическом и ионизационном методах контроля. Также широко применяется методы контроля, основанные на электрическом потенциале пламени, и на электрической пульсации пламени [7].

Наиболее часто применяемый фотоэлектрический метод контроля за горением топлива заключается в измерении степени видимого и невидимого излучения пламени соответствующими фотодатчиками, фиксирующими оптические свойства пламени. Фотодатчики, применяемые в таких системах, осуществляют регистрацию всех изменений интенсивности принимаемого ими светового потока, и отличаются они друг от друга по длине волны, принимаемой от источника излучения. Эти свойства фотодатчиков необходимо учитывать, так как спектральные характеристики пламени в значительной степени зависят от вида используемого топлива. При сгорании топлива излучение происходит в видимом, инфракрасном и ультрафиолетовом спектре. Основная часть энергии, излучаемой пламенем, соответствует инфракрасной части спектра, и характеризуется длиной волны 0,8–800 мкм. Видимому излучению соответствует длина волны в диапазоне 0,4–0,8 мкм, ультрафиолетовому излучению соответствует длина волны в диапазоне 0,28–0,4 мкм (области УФ-А и УФ-В). В соответствии с выбранным чувствительным элементом фотодатчики делятся на инфракрасные, ультрафиолетовые или просто датчики светимости. Каждому диапазону излучения соответствует чувствительный элемент фотоприемного устройства [7]. Серьезной проблемой при использовании оптических датчиков пламени является их низкая селективность, особенно характерная для горелочных котлов, имеющих три или более горелок. При ошибочном сигнале оптического датчика о наличии пламени возможна серьезная аварийная ситуация.

Вторым часто используемым методом контроля пламени является ионизационный метод, основанный на использовании электрических свойств пламени. Работа датчика ионизации основана на фиксировании электрических процессов, возникающих и протекающих в пламени. К таким процессам можно отнести способность пламени проводить ток, возбуждать в электродах, помешенных в пламя, собственную э. д.с., выпрямлять переменный ток, что во всех случаях обусловливается степенью ионизации пламени [8,9].

Преимуществом ионизационного метода является безынерционность, так как при погасании контролируемого пламени ионизационные процессы сразу прекращаются, что приводит к практически мгновенному отключению подачи газа в горелки котла. Этот метод позволил разработать приборы контроля, основанные на электропроводности пламени, возникновении э. д.с. пламени, его вентильном эффекте и электрической пульсации. Например, за рубежом широко применяется метод контроля пламени, основанный на вентильном эффекте, что обеспечивает высокую достоверность обнаружения пламени [10]. Недостатком ионизационного метода контроля является нестабильная работа в условиях с интенсивно запыленной рабочей атмосферой, а также в условиях сильного вихревого движения газов. Ионизационный контроль надежно работает в условиях прямоструйного факела, не имеющего застойных вихревых зон.

Надежность работы датчика пламени, и надежность всей системы защиты от погасания пламени зависят как от правильного выбора типа датчика, так и от места и способа его установки. Все типы датчиков пламени имеют определенные достоинства и недостатки, и неправильный выбор типа датчика или его неправильная установка может вызвать возникновение ложного сигнала. Для снижения вероятности ошибки обнаружения пламени при выборе датчиков для конкретного проекта необходимо принимать во внимание все их особенности [11].

Таким образом, для повышения надежности работы и уменьшения количества остановов котла из-за подачи ошибочного сигнала от датчика пламени необходимо применять несколько различных датчиков, работающих на принципиально независимых друг от друга принципах.

Работа в этом направлении привела к созданию интеллектуального комбинированного датчика пламени, работающего на двух независимых принципах: оптическом и ионизационном. Такое сочетание типов датчиков позволит нивелировать вышеупомянутые недостатки отдельных датчиков, что позволит обеспечить повышенную надежность определения наличия пламени в топке котла.

Для решения этой задачи был разработан комбинированный датчик контроля пламени горелки, сочетающий в себе два принципа работы: оптический и ионизационный. В оптической части разработанного датчика происходит выделение и усиление переменного сигнала, характеризующего процесс горения. При горении топлива образуются пульсации яркости пламени горелки, которые преобразуются в электрический сигнал при помощи фотодатчика, сигнал с которого усиливается и поступает в микроконтроллерное устройство обработки сигнала. Второй датчик — ионизационный, сигнал на выходе которого имеется только при наличии электропроводности среды между электродами, что бывает только при наличии пламени.

Конструкция комбинированного оптоионизационного датчика контроля пламени горелки приведена на рис. 1. Датчик состоит из кварцевого стержня 1, помещенного в корпус 2, керамического стержня 3, внутри которого находятся два электрода из жаропрочной стали, представляющих собой датчик ионизации ДИ, устройство обработки сигналов, в состав которого входят фотодатчик ФД, усилитель-формирователь сигналов фотодатчика УФ1, усилитель-формирователь сигналов датчика ионизации УФ2, и микроконтроллер МК. Микроконтроллер связан с блоком автоматики через разъем Р.

Рис. 1. Комбинированный оптоионизационный датчик контроля пламени

Сигналы переменной амплитуды, возникающие при наличии пульсаций пламени, с фотодатчика ФД и ионизационного датчика ДИ усиливаются и приводятся к логическим уровням при помощи усилителей-формирователей УФ1 и УФ2 соответственно. Микроконтроллер МК предназначен для обработки сигналов с фотодатчика ФД и датчика ионизации ДИ, и формирования управляющего сигнала для блока автоматики котла.

Устройство обработки сигналов обеспечивает выделение высокочастотных пульсаций факела, полученных с фотоприемника при работающей горелке, и обеспечивает формирование признака наличия и отсутствия факела, а также самодиагностику с выводом состояния датчика на световой индикатор.

Предложенный комбинированный датчик позволяет контролировать наличие пламени при сжигании газа или жидкого топлива. Для повышения надежности работы применены режимы автоматической и ручной настройки чувствительности датчиков и влияния фонового излучения, самоконтроля прибора по превышению температуры, контроля обрыва линий связи, засорения стекла, потери чувствительности. К устройству подключается внешний светодиодный индикатор интенсивности факела и сигнализатор превышения температуры внутри прибора.

Параметры комбинированного датчика:

Коммуникационный протокол RS-485

Время срабатывания, при появлении/погасании пламени с, не более0,5/1

Напряжение питания, В 12–24

Потребляемый ток, А, не более 0,2

Температура окружающего воздуха, ºС -25 …+85

Масса, кг, не более 0,3

Основными функциями комбинированного опто-ионизационного датчика контроля являются сигнализация погасания пламени, что вызывает немедленное срабатывание защиты и прекращение подачи топлива, самоконтроль исправности датчика, автоподстройку параметров датчика, сохранение параметров датчика в энергонезависимой памяти микроконтроллера при исчезновении питания и сбоях в работе, а также формирование дискретного выходного сигнала для устройства автоматики.

Читать еще:  Какими электродами варить водопроводные трубы?

Таким образом, сочетание в одном устройстве двух различных датчиков, работающих на двух принципиально независимых друг от друга принципах, и имеющих общее устройство обработки сигналов, позволит обеспечить повышенную надежность определения наличия пламени в топке котла.

  1. Береснев А. Л., Будко А. Ю. Повышение эффективности теплоэнергетических установок методом контроля горения топлива по сигналу ионного тока. [Электронный ресурс] // «Инженерный вестник Дона», 2013, № 4. — Режим доступа: http://www.ivdon.ru/ru/magazine/archive/n4y2013/1973 (доступ свободный) — Загл. с экрана. — Яз.рус.
  2. Хватов О.С, Дарьенков А.Б., Самоявчев И. С. Оценка топливной экономичности в единых электростанциях автономных объектов на базе [Электронный ресурс] // «Инженерный вестник Дона», 2013, № 3. — Режим доступа: http://ivdon.ru/magazine/archive/n4y2013/1870/(доступ свободный) — Загл. с экрана. — Яз.рус.
  3. Fristrom R. M. Flame structure and processes // Oxford University Press, N. Y. Oxford. 1995.
  4. Huth, A. Heilos. Fuel flexibility in gas turbine systems: impact on burner design and performance // A volume in Woodhead Publishing Series in Energy, Siemens AG Energy, Germany, 2013, P. 635–684.
  5. Полтавцев, О. В. Датчики контроля пламени — один из важнейших факторов безопасной работы котельной [Электронный ресурс] / О. В. Полтавцев // Новости теплоснабжения, — 2016. — № 12 (196). — Режим доступа: www.rosteplo.ru/nt/196(доступ свободный) — Загл. с экрана. — Яз.рус.

6. Берсенев, И. С. Автоматика отопительных котлов и агрегатов / И. С. Берсенев, М. А. Волков, Ю. С. Давыдов. — М.: Стройиздат, 1979. — 376 с.

Датчик ионизации пламени принцип работы

Во время использования любого теплового оборудования, работающего на природном горючем, всегда нужно крепко помнить о высоком риске воспламенения или даже взрыва этого природного горючего вещества.

Такая беда может произойти в ситуациях, при которых может потухнуть огонь газовой горелки или факела по какой-либо причине. Если газовая смесь будет продолжать поступать во внутреннее пространство агрегата или внешнее пространство вокруг него, будет достаточно одной искры открытого огня для того, чтобы произошел пожар или даже взрыв.

Самой частой причиной подобных случаев является отрыв пламени с последующим затуханием. Это происходит при его смещении от выхода в направлении потока газовой смеси. В итоге топка заполняется газом, что приводит к хлопку или взрыву. Причина отрыва – превышение скорости потока смеси над скоростью распространения огня.

Контролируем пламя

Контроль наличия открытого огня производится с помощью ионизационного электрода. Принцип контроля пламени с помощью данного процесса основан на классическом физическом явлении.

При горении газа происходит образование огромного количества свободно заряженных частиц – электронов со знаком минус и ионов со знаком плюс. Они притягиваются и двигаются к ионизационному электроду и формируют ток ионизации небольшой силы – буквально несколько микроампер.

Электрод ионизации соединяется с автоматом горения, который снабжен чутким пороговым устройством. Оно срабатывает при образовании достаточного количества заряженных электронов и ионов – разрешает работу горелки. Если же поток ионизации снижается и достигает минимального порога, горелка мгновенно отключается.

Чтобы устройство работало правильно и долго, нужно первым делом точно соблюдать соотношение воздуха и горючей смеси. Второе условие успеха – содержание устройства в полной чистоте.

Ионизационные электроды используют в датчиках контроля пламени газовых горелок. Их главная задача — сигнализировать блоку управления о прекращении горения и необходимости перекрыть поступление газа. Эти устройства применяют для контроля непрерывности пламени в промышленных печах, домашних котлах отопления, газовых колонках и кухонных плитах. Нередко их дублируют фотодатчиками и термопарами, но в самых простых тепловых аппаратах ионизационный электрод является единственным средством контроля за зажиганием газа и непрерывностью его горения.

Назначение, принцип работы и конструкция ионизационного электрода

Если в нагревательном устройстве по каким-то причинам пропадает пламя, то сразу же должна быть прекращена подача газа. В противном случае он достаточно быстро заполнит объем установки и помещение, что может привести к объемному взрыву от случайной искры. Поэтому все нагревательные установки, работающие на природном газе, в обязательном порядке должны оснащаться системой слежения за наличием пламенем и блокировки подачи газа. Ионизационные электроды контроля пламени обычно выполняют две функции: во время зажигания газа от запальника разрешают его подачу при наличии устойчивой искры, а при исчезновении пламени подают сигнал на отключение газа основной горелки.

Принцип работы

Принцип работы ионизационного электрода основан на физических свойствах пламени, которое по своей сути является низкотемпературной плазмой, т. е. средой, насыщенной свободными электронами и ионами и поэтому обладающей электропроводностью и чувствительностью к электромагнитным полям. Обычно на него подается положительный потенциал от источника постоянного тока, а корпус горелки и запальник присоединяются к отрицательному. На рисунке ниже показан процесс возникновения тока между корпусом запальника и электродным стержнем, возвышающийся торец которого предназначен для контроля пламени основной горелки.

Процесс зажигания газа в нагревательной установке происходит в два этапа. На первом в запальник подается небольшое количество газа и включается электроискровое зажигание. При возникновении в запальнике устойчивого воспламенения происходит ионизация и начинает протекать постоянный ток в сотые доли миллиампер. Устройство контроля электрода подает сигнал системе управления, открывается электроклапан, и происходит поджигание основного потока газа. С этого момента электрод формирует управляющий сигнал уже от ионизации его пламени. Система управления настроена на определенный уровень ионизации, поэтому, если ее интенсивность снижается до заданного предела и ток в плазме падает, происходит отключение подачи газа и гашение пламени. После этого весь цикл с использованием запальника повторяется в автоматическом режиме до тех пор, пока процесс горения не станет устойчивым.

Основные причины срабатывания сигнализации о снижении уровня ионизации в пламени:

  • неправильная пропорция газовоздушной смеси, формируемой в запальнике;
  • нагар или загрязнение на ионизационном электроде;
  • недостаточная мощность потока пламени;
  • уменьшение сопротивления изоляции из-за накопления в запальнике токопроводящей пыли.

Одним из главных достоинств ионизационных электродов является мгновенная скорость срабатывания при погасании пламени. В отличие от них термопарные датчики формируют сигнал только через несколько секунд, которые им требуются для остывания. Кроме того, ионизационные электроды недороги, т. к. имеют очень простую конструкцию: металлический стержень, изолирующая втулка и разъем. Также они очень просты в эксплуатации и обслуживании, которое заключается в очистке стержня от нагара.

К недостаткам датчиков ионизационного контроля можно отнести их ненадежность при работе с газовым топливом, содержащим большие доли водорода или окиси углерода. В этом случае в пламени генерируется недостаточное количество свободных ионов и электронов, что приводит к невозможности удержания стабильного тока. Кроме того, этот метод может оказаться непригодным при работе в условиях повышенной запыленности.

Конструктивные особенности

Металлический стержень ионизационного электрода изготовлен из хромали — сплава железа с хромом и алюминием, который имеет жаростойкость около 1400 °C. Вместе с тем температура в верхней части пламени при горении природного газа может достигать 1600 °C, поэтому контрольные электроды размещают в его корне, где температура ниже — от 800 до 900 °C. Изолирующий цоколь ионизационного электрода, с помощью которого он монтируется на запальнике, представляет собой высокопрочную и жаростойкую керамическую втулку.

Ионизационный электрод может быть только контрольным, а может выполнять сразу две функции: запальную и контрольную. Во втором случае для зажигания пламени запальника на него подается высокое напряжение, формирующее искру. Через несколько секунд оно отключается, происходит переключение на питание постоянным током и переход в контрольный режим. Если электрод выполняет только контрольную функцию, то его изоляция, разъем и кабель должны соответствовать требованиям низковольтной аппаратуры, эксплуатируемой при высоких температурах. При использовании его в качестве запального сопротивление изоляции должно выдерживать на пробой напряжение 20 кВ, а подсоединение к блоку управления производиться высоковольтным кабелем.

При установке ионизационного электрода в корпус конкретной горелки необходимо применять изделие оптимальной длины. Слишком большой стержень будет перегреваться, деформироваться и быстрее покрываться нагаром. В случае малой длины возможны ситуации, когда ионизационный поток будет прерываться при уходе пламени от конца электрода к другому краю корпуса горелки. В реальных условиях длину электрода обычно подбирают экспериментальным путем.

В бытовых газовых плитах для зажигания используют электроискровые запальные электроды, а для контроля за пламенем — термопарные датчики. А почему в бытовых устройствах не применяют ионизационные электроды в раздельном или совмещенном виде? Ведь они дешевле термопар. Если вы знаете ответ на этот вопрос, поделитесь, пожалуйста, информацией в комментариях к данной статье.

Во время использования любого теплового оборудования, работающего на природном горючем, всегда нужно крепко помнить о высоком риске воспламенения или даже взрыва этого природного горючего вещества.

Такая беда может произойти в ситуациях, при которых может потухнуть огонь газовой горелки или факела по какой-либо причине. Если газовая смесь будет продолжать поступать во внутреннее пространство агрегата или внешнее пространство вокруг него, будет достаточно одной искры открытого огня для того, чтобы произошел пожар или даже взрыв.

Самой частой причиной подобных случаев является отрыв пламени с последующим затуханием. Это происходит при его смещении от выхода в направлении потока газовой смеси. В итоге топка заполняется газом, что приводит к хлопку или взрыву. Причина отрыва – превышение скорости потока смеси над скоростью распространения огня.

Контролируем пламя

Контроль наличия открытого огня производится с помощью ионизационного электрода. Принцип контроля пламени с помощью данного процесса основан на классическом физическом явлении.

При горении газа происходит образование огромного количества свободно заряженных частиц – электронов со знаком минус и ионов со знаком плюс. Они притягиваются и двигаются к ионизационному электроду и формируют ток ионизации небольшой силы – буквально несколько микроампер.

Электрод ионизации соединяется с автоматом горения, который снабжен чутким пороговым устройством. Оно срабатывает при образовании достаточного количества заряженных электронов и ионов – разрешает работу горелки. Если же поток ионизации снижается и достигает минимального порога, горелка мгновенно отключается.

Чтобы устройство работало правильно и долго, нужно первым делом точно соблюдать соотношение воздуха и горючей смеси. Второе условие успеха – содержание устройства в полной чистоте.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector
×
×